[1]
I. Ostrovsky and Y. Henn, Present state and future of magnesium application in aerospace industry, " in ASTEC, 07 New Challenges in Aeronautics, Moscow, Russia, 19-22 August 2007, (2007).
Google Scholar
[2]
F. Moll and K. U. Kainer, Particle-Reinforced Magnesium Alloys, in Magnesium – Alloys and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, 2004, p.197–217.
DOI: 10.1002/3527602046.ch12
Google Scholar
[3]
W. L. E. Wong and M. Gupta, Using hybrid reinforcement methodology to enhance overall mechanical performance of pure magnesium, J. Mater. Sci., vol. 40, no. 11, p.2875–2882, Jun. (2005).
DOI: 10.1007/s10853-005-2429-2
Google Scholar
[4]
J. Lan, Y. Yang, and X. Li, Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method, Mater. Sci. Eng. A, vol. 386, no. 1–2, p.284–290, Nov. (2004).
DOI: 10.1016/s0921-5093(04)00936-0
Google Scholar
[5]
H. Ferkel and B. L. Mordike, Magnesium strengthened by SiC nanoparticles, Mater. Sci. Eng. A, vol. 298, no. 1–2, p.193–199, Jan. (2001).
DOI: 10.1016/s0921-5093(00)01283-1
Google Scholar
[6]
W. L. E. Wong and M. Gupta, Simultaneously Improving Strength and Ductility of Magnesium using Nano-size SiC Particulates and Microwaves, Adv. Eng. Mater., vol. 8, no. 8, p.735–740, Aug. (2006).
DOI: 10.1002/adem.200500209
Google Scholar
[7]
C. Ma, L. Chen, J. Xu, A. Fehrenbacher, Y. Li, F. E. Pfefferkorn, N. a Duffie, J. Zheng, and X. Li, Effect of fabrication and processing technology on the biodegradability of magnesium nanocomposites., J. Biomed. Mater. Res. B. Appl. Biomater., vol. 101, no. 5, p.870–7, Jul. (2013).
DOI: 10.1002/jbm.b.32891
Google Scholar
[8]
K. B. Nie, X. J. Wang, K. Wu, L. Xu, M. Y. Zheng, and X. S. Hu, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloys Compd., vol. 509, no. 35, p.8664–8669, Sep. (2011).
DOI: 10.1016/j.jallcom.2011.06.091
Google Scholar
[9]
W. L. E. Wong and M. Gupta, Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering., J. Microw. Power Electromagn. Energy, vol. 44, no. 1, p.14–27, Jan. (2010).
DOI: 10.1080/08327823.2010.11689773
Google Scholar
[10]
S. F. Hassan and M. Gupta, Development of high performance magnesium nanocomposites using solidification processing route, Mater. Sci. Technol., vol. 20, no. 11, p.1383–1388, Nov. (2004).
DOI: 10.1179/026708304x3980
Google Scholar
[11]
W. L. E. Wong and M. Gupta, Improving Overall Mechanical Performance of Magnesium Using Nano-Alumina Reinforcement and Energy Efficient Microwave Assisted Processing Route, Adv. Eng. Mater., vol. 9, no. 10, p.902–909, Oct. (2007).
DOI: 10.1002/adem.200700169
Google Scholar
[12]
S. Sankaranarayanan, R. Sabat, S. Jayalakshmi, S. Suwas, a. Almajid, and M. Gupta, Mg/BN nanocomposites: nano-BN addition for enhanced room temperature tensile and compressive response, J. Compos. Mater., Nov. (2014).
DOI: 10.1177/0021998314559278
Google Scholar
[13]
S. Seetharaman, J. Subramanian, K. Tun, A. Hamouda, and M. Gupta, Synthesis and Characterization of Nano Boron Nitride Reinforced Magnesium Composites Produced by the Microwave Sintering Method, Materials (Basel)., vol. 6, no. 5, p.1940–1955, May (2013).
DOI: 10.3390/ma6051940
Google Scholar
[14]
X. L. Zhong, W. L. E. Wong, and M. Gupta, Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles, Acta Mater., vol. 55, no. 18, p.6338–6344, Oct. (2007).
DOI: 10.1016/j.actamat.2007.07.039
Google Scholar
[15]
W. L. E. Wong and M. Gupta, Development of Mg/Cu nanocomposites using microwave assisted rapid sintering, Compos. Sci. Technol., vol. 67, no. 7–8, p.1541–1552, Jun. (2007).
DOI: 10.1016/j.compscitech.2006.07.015
Google Scholar
[16]
Y. Chen, Y. B. Guo, M. Gupta, and V. P. W. Shim, Dynamic tensile response of magnesium nanocomposites and the effect of nanoparticles, Mater. Sci. Eng. A, vol. 582, p.359–367, Oct. (2013).
DOI: 10.1016/j.msea.2013.06.052
Google Scholar