Monitoring Fatigue Damage in PC Using Carbon Nanotubes

Article Preview

Abstract:

Polymer concrete (PC) overlays are typically used in infrastructure applications, specifically bridges and parking structures, to provide durable protection to the structural system. However, PC suffers from cracking and crack propagation during its service life mostly due to fatigue. Fatigue cracking of PC results in limiting the service life of PC considerably. Monitoring of fatigue damage in PC can help extend PC service life.In this paper, we demonstrate the possible use of carbon nanotubes to monitor damage initiation and propagation in PC under fatigue loading. PC prisms were produced using epoxy polymer concrete with varying contents of multi-walled carbon nanotubes (MWCNTs). The percolation level of MWCNTs necessary to produce conductive PC was first determined. Fatigue testing using an AASHTO modified test set-up was conducted. Electrical conductivity of PC overlay was continuously measured during fatigue testing. Damage initiation and propagation in PC incorporating MWCNTs overlays can be detected and monitored.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-101

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ACI Committee 548, Polymers and adhesives in concrete, State of the Art Report, (2009).

Google Scholar

[2] P. D. Kraus, Bridge deck repair using polymers, International Congress on Polymers in Concrete, North American Workshop, San Francisco, CA, USA, (1991).

Google Scholar

[3] P. J. Koblischek, Polymer concrete as an alternative material for grey cast iron and steel weldments on machine tool applications, in: Proceedings of ICPIC, San Francisco, CA, USA, (1991).

DOI: 10.1007/978-94-011-3646-4_56

Google Scholar

[4] H. Abdel-Fattah, M.M. El-Hawary, Flexural behavior of polymer concrete, Constr. Build Mater. 13(5), (1999) 253-262.

DOI: 10.1016/s0950-0618(99)00030-6

Google Scholar

[5] H. T. Hsu, D.W. Fowler, Creep and fatigue of polymer concrete, Polymer Concrete: Uses, Materials, and Properties, American Concrete Institute (ACI) SP-89, MI, 1985, pp.323-341.

Google Scholar

[6] B. Chmielewska, L. Czarnecki, J. Sustersic, The influence of coupling agent on the properties of polymer mortar, Cement and Concrete Composites, 28 (2006) 803-810.

DOI: 10.1016/j.cemconcomp.2006.04.005

Google Scholar

[7] M. Heidari-Rarani, M. R. M. Aliha, M. M. Shokrieh, M. R. Ayatollahi, Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings – an experimental study, Construction and Bldg. Mater. 64 (2014) 308-315.

DOI: 10.1016/j.conbuildmat.2014.04.031

Google Scholar

[8] R. Bedi, R. Chandra, S. P. Singh, Mechanical properties of polymer concrete, J. of Composites. Article ID 948745 (2013) 12 pages.

Google Scholar

[9] K. Sharma, M. Shukla, Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: processing, characterization, and multiscale modeling. J. of Nanomaterials. (2014) 1-10.

DOI: 10.1155/2014/837492

Google Scholar

[10] G. Lubineau, A., Rahaman, A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements, Carbon. 50 (2012) 2377-2395.

DOI: 10.1016/j.carbon.2012.01.059

Google Scholar

[11] M. Moniruzzaman, K. I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules. 39 (2006) 5194−5205.

DOI: 10.1021/ma060733p

Google Scholar

[12] M. R. Ayatollahi, S. Shadlou, M. M. Shokrieh, Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites, Engin. Fracture Mech. 78 (2011) 2620-2632.

DOI: 10.1016/j.engfracmech.2011.06.021

Google Scholar

[13] W. Bauhofer, J. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Sci. and Tech. 69 (2009) 1486-1498.

DOI: 10.1016/j.compscitech.2008.06.018

Google Scholar

[14] A. T. Seyhan, M. Tanoglu, K. Schulte, Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites, Engin. Fracture Mech. 75 (2008) 5151-5162.

DOI: 10.1016/j.engfracmech.2008.08.003

Google Scholar

[15] J. Zhu, J. Kim, H. Q. Peng, J. L. Margrave, V. N. Khabashesku, E. V. Barrera, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization, Nano Lett. 3 (2003) 1107-1113.

DOI: 10.1021/nl0342489

Google Scholar

[16] B. W. Jo, S. K. Park, D. K. Kim, Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete, Const. and Bldg. Mater. 22(1) (2008) 14-20.

DOI: 10.1016/j.conbuildmat.2007.02.009

Google Scholar

[17] M. M. Shokrieh, A. R. Kefayati, M. Chitsazzadeh, Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete, Mater. and Design. 40 (2012) 443-452.

DOI: 10.1016/j.matdes.2012.03.008

Google Scholar

[18] S. M. Daghash, New generation polymer concrete incorporating carbon nanotubes, University of New Mexico, 2013, MS Thesis.

Google Scholar

[19] ASTM D257-99, Standard test methods for DC resistance or conductance of insulating materials, ASTM International Standards, PA, USA.

Google Scholar

[20] AASHTO T321-07 (2007) Determining the fatigue life of compacted hot-mix asphalt (HMA) subjected to repeated flexural bending. AASHTO, Washington DC, USA.

Google Scholar

[21] B. J. Carey, K. P. Patra, L. Ci, G. G. Silva, M. Ajayan, Observation of dynamic strain hardening in polymer nanocomposites, ACS Nano. 26 (2011) 2715-2722.

DOI: 10.1021/nn103104g

Google Scholar

[22] S. Zhang, M. Minus, L. Zhu, C. Wong, S. Kumar, Polymer transcrystallinity induced by carbon nanotubes, Polymer. 49 (2008) 1356-1364.

DOI: 10.1016/j.polymer.2008.01.018

Google Scholar