[1]
V.K. Gupta, M. Gupta, S. Sharma, Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste, Water Res. 35 (5) (2001) 1125-1134.
DOI: 10.1016/s0043-1354(00)00389-4
Google Scholar
[2]
M. Kobya, Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies, Bioresource Technol. 91 (2004) 317-321.
DOI: 10.1016/j.biortech.2003.07.001
Google Scholar
[3]
G. Colo'n, C. Hidalgo, J.A. Navı'o, Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid. J. Photochem. Photobiol. A 138 (2001) 79-85.
DOI: 10.1016/s1010-6030(00)00372-5
Google Scholar
[4]
S.M. Lee, T.W. Lee, B.J. Choi, J.K. Yang, Treatment of Cr(VI) and phenol by illuminated TiO2. J. Environ. Sci. Health A 38 (2003) 2219-2228.
Google Scholar
[5]
J.K. Yang, S. M. Lee, Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere 63 (2006) 1677-1684.
DOI: 10.1016/j.chemosphere.2005.10.005
Google Scholar
[6]
Y.M. Tzou, S.L. Wang, M.K. Wang, Fluorescent light induced Cr(VI) reduction by citrate in the presence of TiO2 and ferric ions. Colloids Surf. A: 253 (2005) 15-22.
DOI: 10.1016/j.colsurfa.2004.10.124
Google Scholar
[7]
J.M. Meichtry, M. Brusa, G. Mailhot, M.A. Grela, M.I. Litter. Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: Relevance of Cr(V)-citrate complexes. Appl. Catal., B: Environ. 71 (2007) 101-107.
DOI: 10.1016/j.apcatb.2006.09.002
Google Scholar
[8]
X.F. LEI, X.X. XUE. Preparation of perovskite type titanium-bearing blast furnace slag photocatalyst doped with sulphate and investigation on reduction Cr(VI) using UV-Vis light[J]. Mater Chem Phys. 112(2008) 928-933.
DOI: 10.1016/j.matchemphys.2008.06.065
Google Scholar
[9]
O. Horvath, E. Bodnar, J. Hegyi, Photoassisted oxidative degradation of surfactants and simultaneous reduction of metals in titanium dioxide dispersions. Colloids Surf., A: 265 (2005) 135-140.
DOI: 10.1016/j.colsurfa.2004.12.066
Google Scholar
[10]
G. Colon, M.C. Hidalgo, J.A. Navıo, Influence of carboxylic acid on the photocatalytic reduction of Cr(VI) using commercial TiO2. Langmuir 17 (2001) 7174-7177.
DOI: 10.1021/la010778d
Google Scholar
[11]
M. Krumpolc, J. Rocek, Stable chromium(V) compounds. J. Am. Chem. Soc. 98 (1976) 872-873.
DOI: 10.1021/ja00419a057
Google Scholar
[12]
A. Levina, P.A. Lay, Mechanistic studies of relevance to the biological activities of chromium. Coord. Chem. Rev. 249 (2005) 281-298.
DOI: 10.1016/j.ccr.2004.02.017
Google Scholar
[13]
S.J. Hug, H.U. Laubscher, Iron(III) Catalyzed photochemical reduction of chromium(VI) by oxalate and citrate in aqueous solutions. Environ. Sci. Technol. 31 (1997) 160-170.
DOI: 10.1021/es960253l
Google Scholar
[14]
Y. Ku, I.L. Jung, Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35 (2001) 135-142.
DOI: 10.1016/s0043-1354(00)00098-1
Google Scholar
[15]
B. Stypula, J. Stoch, The characterization of passive films on chromium electrodes by XPS. Corros. Sci. 36(1994) 2159-2167.
DOI: 10.1016/0010-938x(94)90014-0
Google Scholar
[16]
P. Mohapatra, S. K. Samantaray, K. Parida, Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania, J. Photochem. Photobiol. A 170 (2005) 189-194.
DOI: 10.1016/j.jphotochem.2004.08.012
Google Scholar
[17]
I. Poulios, M. Kositzi, A. Kouras, Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions, J. Photochem. Photobiol. A: Chem. 115 (1998) 175-183.
DOI: 10.1016/s1010-6030(98)00259-7
Google Scholar
[18]
J. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants . Catal. Today, 53(1999) 115-129.
DOI: 10.1016/s0920-5861(99)00107-8
Google Scholar