Anatase TiO2 Nano-Particles Preparation with Neutralization Hydrolysis Technique and Photocatalytic Performance

Article Preview

Abstract:

A neutralization hydrolysis route has been used to synthesize titanium oxide nanoparticles. Transmission electron microscopy(TEM) and X-ray diffraction(XRD) characteri- zation results showed the TiO2 nanoparticles were single anatase phases when calcined at 600°C-800°C for 2h. The particle diameter ranged from 15 to 30nm. The pH value was key factor for precursor composition. When pH value 2-4, the H2TiO3 precursor with low agglomeration was obtained. As-prepared anatase TiO2 nanoparticles, during photodegradation of methylic orange under UV-light irradiation(λ=254nm), exhibited excellent activity, more than 95.5% methylic orange was degraded in 1h.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 113-116)

Pages:

1639-1643

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Moritz, J. Reiss, K. Diwsner, D. Su and A. Chernseddine: J. Phys. Chem Vol. B101(1997), p.8052.

Google Scholar

[2] M.A. Fox , M.T. Dulay: Chem. Rrv Vol. 93(1993), p.341.

Google Scholar

[3] M.R. Hoffman, S.T. Martin, W. Choi and D.W. Bahnemann: Chem. Rev Vol. 95(1995), p.69.

Google Scholar

[4] A. Fujishima, K. Honda: Nature Vol. 37(1972), p.238.

Google Scholar

[5] A.P. Davis, D.L. Green: Environ. Sci. Technol Vol. 33(1999) , p.609.

Google Scholar

[6] M. Marta, P. Carlo, S. Elena: Ulatrasonics Sonochem Vol. 10(2003), p.247.

Google Scholar

[7] K. Terabe, K. Kato: J. Mater. Sci Vol. 29(1994), p.1617.

Google Scholar

[8] C. Dominguez, J. Garcia, M.A. Perdraz, A. Torees and M.A. Galan: Catalysis today Vol. 40(1998), p.85.

Google Scholar

[9] Shahed U. M. Khan, Mofareh Al-Shahry, William B. Ingler Jr: SCIENCE Vol. 297(2002), p.2243.

Google Scholar

[10] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: SCIENCE Vol. 293(2001), p.269.

Google Scholar

[11] Q.H. Zhang, L. Gao and J.K. Guo: Nanostructured Materials Vol. 11(1999), p.1293.

Google Scholar

[12] D.S. Bhatkhande, V.G. Pangarkar and A. Beenackers: J. Chem. Technol. Biotechnol Vol. 77 (2001), p.102.

Google Scholar

[13] S.W. Sarah, B. Donia, J.A. Scott and A. Rose: Chem. Eng. J Vol. 95 (2003), p.213.

Google Scholar

[14] S.E. Pratsinis: J. Aerosol Sci Vol. 27 (1996), p.153.

Google Scholar

[15] T. -C. Chou, T. -R. Ling, M. -C. Yang and C. -C. Liu: Mater. Sci. Eng. A Vol. 359 (2003), p.24.

Google Scholar

[16] S. Yamabi , H. Imai: Thin Solid Films Vol. 434 (2003), p.86.

Google Scholar

[17] X. Liu, C. Liang, H. Wang, X. Yang, L. Lu and X. Wang: Mater. Sci. Eng. A Vol. 326 (2002), p.235.

Google Scholar

[18] R.S. Sonawane, S.G. Hegde and M.K. Dongare: Mater. Chem. Phys Vol. 77 (2003), p.744.

Google Scholar

[19] M.J. Alamand, D.C. Cameron: J. Sol-Gel Sci. Tech Vol. 25 (2002), p.137.

Google Scholar

[20] Yu.V. Kolen'ko, B. R. Churagulov, M. Kunst, L. Mazerolles and C. Colbeau-Justin: Applied Catalysis B: Environmental Vol. 54(2004), p.51.

DOI: 10.1016/j.apcatb.2004.06.006

Google Scholar

[21] E. Matijevic: Langmuir Vol. 7 (1991), p.2911.

Google Scholar

[22] Guiguang Chen, Guangsheng Luo, Xuerui Yang, Yiwen Sun and Jiading Wang: Materials Science and Engineering A Vol. 380(2004), p.320.

Google Scholar

[23] S.J. Kim, S.D. Park and Y.H. Jeong: J. Am. Ceram. Soc Vol. 824(1999), p.927.

Google Scholar

[24] Sanjay R. Dhage, Vandana D. Choube and Violet Samuel: V. Ravi. Materials Letters Vol. 58(2004), p.23.

Google Scholar