Changes in Acidithiobacillus ferrooxidans Ability to Reduce Ferric Iron by Elemental Sulfur

Abstract:

Article Preview

Ferric iron may act as a thermodynamically favourable electron acceptor during elemental sulfur oxidation by Acidithiobacillus ferrooxidans in extremely acidic anoxic environments. A loss of anaerobic ferric iron reduction ability has been observed in ferrous iron-grown A. ferrooxidans CCM 4253 after aerobic passaging on elemental sulfur. In this study, iron-oxidising cells aerobically adapted from ferrous iron to elemental sulfur were still able to anaerobically reduce ferric iron, however, following aerobic passage on elemental sulfur it could not. Preliminary quantitative proteomic analysis of whole cell lysates of the passage that lost anaerobic ferric iron-reducing activity resulted in 150 repressed protein spots in comparison with the antecedent culture, which retained the activity. Identification of selected protein spots by tandem mass spectrometry revealed physiologically important proteins including rusticyanin and outer-membrane cytochrome Cyc2, which are involved in iron oxidation. Other proteins were associated with sulfur metabolism such as sulfide-quinone reductase and proteins encoded by the thiosulfate dehydrogenase and heterodisulfide reductase complex operons. Furthermore, proteomic analysis identified proteins directly related to anaerobiosis. The results indicate the importance of iron-oxidising system components for anaerobic sulfur oxidation in the studied microbial strain.

Info:

Periodical:

Edited by:

M. Zaki Mubarok, Siti Khodijah Chaerun, Wahyudin Prawira Minwal, Fadhli Muhammad and Killang Pratama

Pages:

97-100

Citation:

J. Kucera et al., "Changes in Acidithiobacillus ferrooxidans Ability to Reduce Ferric Iron by Elemental Sulfur", Advanced Materials Research, Vol. 1130, pp. 97-100, 2015

Online since:

November 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] T. D. Brock and J. Gustafson: Appl. Environ. Microbiol. Vol. 32 (1976), p.567.

[2] J. T. Pronk, a. C. De Bruyn, P. Bos and J. G. Kuenen: Appl. Environ. Microbiol. Vol. 58 (1992), p.2227.

[3] J. Kucera, J. Zeman, M. Mandl and H. Cerna: Antonie Van Leeuwenhoek Vol. 101 (2012), p.919.

DOI: https://doi.org/10.1007/s10482-012-9699-x

[4] C. M. Corbett and W. J. Ingledew: FEMS Microbiol. Lett. Vol. 41 (1987), p.1.

[5] J. T. Pronk, K. Liem, P. Bos and J. G. Kuenen: Appl. Environ. Microbiol. Vol. 57 (1991), p. (2063).

[6] J. Kucera, P. Bouchal, H. Cerna, D. Potesil, O. Janiczek, Z. Zdrahal and M. Mandl: Antonie Van Leeuwenhoek Vol. 101 (2012), p.561.

DOI: https://doi.org/10.1007/s10482-011-9670-2

[7] H. Osorio, S. Mangold, Y. Denis, I. Ñancucheo, M. Esparza, D. B. Johnson, V. Bonnefoy, M. Dopson and D. S. Holmes: Appl. Environ. Microbiol. Vol. 79 (2013), p.2172.

[8] M. P. Silverman and D. G. Lundgren: J. Bacteriol. Vol. 77 (1959), p.642.

[9] P. Ceskova, M. Mandl and J. Hubackova: Biotechnol. Lett. Vol. 22 (2000), p.699.

[10] N. Ohmura, K. Sasaki, N. Matsumoto and H. Saiki: J. Bacteriol. Vol. 184 (2002), p. (2081).

[11] J. Kucera, P. Bouchal, J. Lochman, D. Potesil, O. Janiczek, Z. Zdrahal and M. Mandl, Antonie Van Leeuwenhoek Vol. 103 (2013), p.905.

DOI: https://doi.org/10.1007/s10482-012-9872-2

[12] O. Janiczek, B. Pokorna, J. Zemanova and M. Mandl: J. Biotechnol. Vol. 117 (2005), p.293.

[13] O. Janiczek, J. Zemanova and M. Mandl: Prep. Biochem. Biotechnol. Vol. 37 (2007), p.101.

[14] P. M. Vignais, B. Billoud and J. Meyer: FEMS Microbiol. Rev. Vol. 25 (2001), p.455.