Industrial Views to Microbe-Metal Interactions in Sub-Arctic Conditions

Article Preview

Abstract:

This paper covers industrial views and challenges related to microbe-metal interactions in the sub-arctic conditions in Finland. The first issue is to operate bioleaching and bio-precipitation processes in cold and rainy environments where microbial activities tend to be low and solutions get diluted. On the other hand, industrial challenges in cold climates are related to the need to hinder the activity of microbe-metal interactions in certain applications, such as closed mines and nuclear waste repositories. Our case examples show the potential of industrial bioprocess utilization in cold climates, but also emphasize their special characteristics and challenges.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-117

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Jägevall, L. Rabe and K. Pedersen. Microbial Ecol 61 (2011), pp.410-422.

Google Scholar

[2] C. Anderson, K. Pedersen and A.M. Jakobsson. Geomicrobiol J, 23(1) (2006), pp.15-29.

Google Scholar

[3] P. Saari and M. Riekkola-Vanhanen. J. South. Afr. Inst. Min. Metall. Vol. 112 (2012), p.1013.

Google Scholar

[4] Information on http: /www. westernareas. com. au/bioheap.

Google Scholar

[5] Aluehallintovirasto Etelä-Suomi. Dnro ESAVI/269/04. 08/2011 [in Finnish].

Google Scholar

[6] Aluehallintovirasto Etelä-Suomi. Dnro ESAVI/2/04. 08/2014 [in Finnish].

Google Scholar

[7] D.C. Tadic, P.L.V. Elicer, P.M.T. Gómez and M.G. Blufstein. Patent WO2013113132. (2013).

Google Scholar

[8] Pohjois-Suomen aluehallintovirasto. Dnro KAIELY/752/2014. [in Finnish].

Google Scholar

[9] Talvivaara Mining Company Plc. Operational Update, Stock Exchange Release, 10. 10. (2013).

Google Scholar

[10] Federation of European Risk Management Associations. February 4, (2015).

Google Scholar

[11] Finnish Government. Press release 487/2014. 6. 11. (2014).

Google Scholar

[12] M.L. Räisänen, A. Tornivaara, T. Haavisto, K. Niskala and M. Silvola. Ministry of the Environment, Report 24 (2013).

Google Scholar

[13] E. Vestola and U-M. Mroueh. Espoo. VTT Research Notes 2422 (2008).

Google Scholar

[14] H.C. Fleming. In Microbially Influenced Corrosion of Materials ed. E. Heitz, H.C. Fleming and W. Sand. New York: Springer-Verlag (1996), p.6–14.

Google Scholar

[15] P. Rajala, M. Raunio, E. Sohlberg, O. Priha and L. Carpen. 16th Nordic Corrosion Congress 20-22. 5. 2015, Stavanger, Norway, paper nro 18.

Google Scholar

[16] P. Rajala, L. Carpen, M. Vepsäläinen, M. Bomberg and M. Raulio. WM2014 Conference, 2. -6. 3. Phoenix, Arizona, USA, paper nro 14391.

Google Scholar

[17] http: /www. posiva. fi/en/final_disposal/basics_of_the_final_disposal#. VPA2dZXOW-I.

Google Scholar

[18] J.P. Pavissich, I.T. Vargas, B. González, P.A. Pastén, G.E. Pizarro, Jour. Appl. Microbiol., 109 (2010), pp.771-82.

Google Scholar

[19] L. Carpen, P. Rajala, and M. Bomberg. Corrosion of copper in anaerobic groundwater in the presence of SRB. 19th International Corrosion Congress, 2 - 6 November 2014, Jeju, Korea.

Google Scholar

[20] M. Bomberg, M. Arnold and P. Kinnunen. (2015) This issue.

Google Scholar

[21] Bondarczuk, K., & Piotrowska-Seget, Z. (2013). Cell boil. toxic. 29(6), pp.397-405.

Google Scholar

[22] R. Vilchez, C. Pozo, M.A. Gómez, B. Rodelas, and J. González-López. Microbiol. 153(2) (2007), pp.325-337.

Google Scholar