Synthesis of ZnO Nanorod Arrays Structure on Si Substrate

Article Preview

Abstract:

ZnO nanorod arrays were synthesized with simple chemical vapor deposition technique with template without using catalyst by controlling the growth time and condensation growth. The surface morphology of nanostructure were characterized by using field emission scanning electron microscopy (FE-SEM), we found that the ZnO nanorod arrays were uniformly covered on substrate. The extremely strong ZnO (0002) peaks were observed by using X-ray diffraction (XRD), shown the preferred (0001) orientation and high crystalline quality of the ZnO nanostructures. The optical properties were investigated by using photoluminescence (PL). These results showed the contribution of green-yellow emission attributed to the strong inner reflection and scattering. Our results indicating that the uniform ZnO nanorods arrays can be synthesized by using a simplified method. Furthermore, they will be implemented as application for nanodevice fabrication or for gas sensors and solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-59

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ali Abbasi, Z. H. Ibupoto, M. Hussain, M. Willander, The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence, Nanoscale Research Letters. 8 (2013) 320-325.

DOI: 10.1186/1556-276x-8-320

Google Scholar

[2] F. Schuster, B. Laumer, R. R. Zamani, J. R. Morante, M. Stutzmann, p-GaN/n-ZnO Heterojunction Nanowires: Optoelectronic Properties and the Role of Interface Polarity, ACS Nano, 8 (5) (2014) 4376–4384.

DOI: 10.1021/nn406134e

Google Scholar

[3] J. B. Baxter, A. M. Walker, K. V. Ommering, E. S. Aydi, Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells, Nanotechnology, 17 (2006).

DOI: 10.1088/0957-4484/17/11/s13

Google Scholar

[4] Y. Wang, X. L. Xu, W. Y. Xie, Z. B. Wang, Free-standing ZnO-CuO composite nanowire array films and their gas sensing properties, Nanotechnology, 22: 32 (2011) 325704.

DOI: 10.1088/0957-4484/22/32/325704

Google Scholar

[5] J. Yi, J. M. Lee, and W. Park, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors, Sensors and Actuators, B vol. 155, (2011) 264-269.

DOI: 10.1016/j.snb.2010.12.033

Google Scholar

[6] S. Hullavarad, N. Hullavarad, and D. Look., Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensor, Nanoscale Res Lett., vol. 4. (2009) 1421-1427.

DOI: 10.1007/s11671-009-9414-7

Google Scholar

[7] M. Q. Israr, J. R. Sadaf, and O. Nur, Chemically fashioned ZnO nanowalls and their potential application for potentiometric cholesterol biosensor, Applied Physics Letters, 98, (2011) 253705.

DOI: 10.1063/1.3599583

Google Scholar

[8] S. Noothongkaew, S. Pukird, W. Sukkabot, B. Kasemporn, Ki-Seok An, Zinc Oxide Nanostructures Synthesized by Thermal Oxidation of Zinc Powder on Si Substrate, Applied Mechanics and Materials Vol. 328 (2013) 710-714.

DOI: 10.4028/www.scientific.net/amm.328.710

Google Scholar

[9] F. Fleischhaker, V. Wloka, and I. Henniga, ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates, J. Mater. Chem., 20 (2010) 6622-6625.

DOI: 10.1039/c0jm01477j

Google Scholar

[10] J. Goldberger, J. Sirbuly, and P. Yang ZnO Nanowire Transistors, J. Phys. Chem. B, 109 (1), (2005) 9–14.

Google Scholar

[11] P. C. Chang, Z. Fan, C. J. Chien1, High-performance ZnO nanowire field effect transistors, Appl. Phys. Lett. vol. 89, (2006) 133113.

DOI: 10.1063/1.2948901

Google Scholar

[12] N. Elamin, A. Elsanousi, Synthesis of ZnO Nanostructures and their Photocatalytic Activity, Journal of Applied and Industrial Sciences, vol. 1 (2013) 32-35.

Google Scholar

[13] K. S. Yu, J. Y. Shi, Z. L. Zhang, Y. Liang, Synthesis Characterization and Photocatalysis of ZnO and Er-Doped ZnO, Hindawi Publishing Corporation Journal of Nanomaterials, (2013).

DOI: 10.1155/2013/372951

Google Scholar

[14] Q. Peng and Y. Qin., Zinc Oxide Nanowire Solar Cells Resemble Caterpillars, Chaper Nanowies.

Google Scholar

[15] Z. Liang, R. Gao, J. L. Lan, et al., Growth of vertically aligned ZnO nanowalls for inverted polymer solar cells, Solar Energy Materials and Solar Cells, vol. 117 (2013) 34-40.

DOI: 10.1016/j.solmat.2013.05.019

Google Scholar

[16] Z. Wu, L. Qin, and Q. Pan, Fabrication and electrochemical behavior of flower-like ZnO-CoO-C nanowall arrays as anodes for lithium-ion batteries, Journal of Alloys and Compound., vol. 509, (2011) 9207-9213.

DOI: 10.1016/j.jallcom.2011.06.114

Google Scholar

[17] Q. An, Y. Xin, K. Huo, Xun Cai, P. K. Chu, Corrosion behavior of ZnO nanosheets on brass substrate in NaCl solutions, Materials Chemistry and Physics 115 (2009) 439–443.

DOI: 10.1016/j.matchemphys.2009.01.001

Google Scholar

[18] S. Noothongkaew, S. Pukird, W. Sukkabot, Ki-Seok An, Zinc Oxide Nano walls Synthesized by Chemical Vapor Deposition, Key Engineering Materials Vol. 608 (2014)127-131.

DOI: 10.4028/www.scientific.net/kem.608.127

Google Scholar

[19] M. J. Zheng, L.D. Zhang, G.H. Li, W. Z Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett. 363, (2002) 123.

DOI: 10.1016/s0009-2614(02)01106-5

Google Scholar

[20] S. Ohara, T. Mousavand, M. Umetsu, Hydrothermal synthesis of fine zinc oxide particles under supercritical conditions, Solid state Ionics 172 (2004) 261-264.

DOI: 10.1016/j.ssi.2004.02.044

Google Scholar

[21] W. T. Chiou, W. Y. Wu, J. M. Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond and Related Materials, 12 (2003) 1841-1844.

DOI: 10.1016/s0925-9635(03)00274-7

Google Scholar

[22] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, Site-specific growth of ZnO nanorods using catalysis driven molecular beam epitaxy, Applied Physics Letters, 81 (2002) 3046-3048.

DOI: 10.1063/1.1512829

Google Scholar

[23] H. Zhang, J. Feng, J. Wang, M. Zhang, Preparation of ZnO nanorods through wet chemical method, Materials Letters, 61 (2007) 5202-5205.

DOI: 10.1016/j.matlet.2007.04.030

Google Scholar

[24] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, W. Choi, Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition, Advanced Materials, 16: 18 (2004) 1661-1664.

DOI: 10.1002/adma.200306673

Google Scholar

[25] J. Zhang, D. Gao, G. Yang, Synthesis and magnetic properties of Zr dopedZnO Nanoparticles, Nanoscale Research Letters, 6 (2011) 587-593.

Google Scholar

[26] M.G. Gong, Y.Z. Long, X.L. Xu, H.D. Zhang and B. Sun, Synthesis Superhydrophobicity, Enhanced Photoluminescence and Gas Sensing Properties of ZnO Nanowires, Nanowires-Recent Advances, chapter 5, 77-100.

DOI: 10.5772/52586

Google Scholar

[27] H. Zhang, J. Feng, J. Wang, M. Zhang, Preparation of ZnO nanorods through wet chemical method, Materials Letters, 61 (2007) 2202-5205.

DOI: 10.1016/j.matlet.2007.04.030

Google Scholar

[28] W. K. Hsieh, and K. J. Chen, Effect of Ag film thickness on the crystallization mechanism and photoluminescenxe properties of ZnO/Ag nanoflower arrays, Applied Surface Science, 258 (2012) 8049-8054.

DOI: 10.1016/j.apsusc.2012.04.170

Google Scholar

[29] J. Liu, S. Xie, and X. Wang, et al., Homoepitaxial regrowth habits of ZnO nanowireArrays, Nanoscale Research Letters. 6 (2011) 619-625.

Google Scholar

[30] M. Ahmad and J. Zhu, ZnO based advanced functional nanostructures: synthesis, properties and applications, J. Mater. Chem., 21 (2011) 599-614.

DOI: 10.1039/c0jm01645d

Google Scholar

[31] H. Zhou, G. Fang, N. Liu, X. Zhao, Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect, Nanoscale Research Letters, 6 (2011) 147.

DOI: 10.1186/1556-276x-6-147

Google Scholar