Type-II GaSb/GaAs Nanostructures Grown by Droplet Epitaxy with Various Ga Amounts

Article Preview

Abstract:

We study the GaSb/GaAs nanostructures (NSs) grown by droplet epitaxy technique with various Ga amounts. Ga amount deposited on the GaAs (001) substrate was varied between 3-5 ML to form the different size and density of liquid Ga droplets. The Sb flux was subsequently irradiated to crystallize the droplets. Morphology of GaSb NSs was investigated by atomic force microscopy (AFM). Quantum rings were obtained after crystallizing 3-ML Ga droplets, whereas some kind of quantum dots were formed after crystallizing 4-and 5-ML Ga droplets. The formation mechanisms leading to the different structure are discussed. The photoluminescence (PL) measurement was performed to examine the optical properties of GaSb/GaAs NSs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-63

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Hatami, N.N. Ledentsov, M. Grundmann, J. Bohrer, F. Heinrichsdorff, M. Beer, D. Bimberg, S.S. Ruvimov, P. Werner, U. Gosele, J. Heydenreich, U. Richter, S.V. Ivanov, B. Ya. Meltser, P.S. Kop'ev, Zh.I. Alferov, Radiative recombination in type-II GaSb/GaAs QDs, Appl. Phys. Lett. 67 (1995).

DOI: 10.1063/1.115193

Google Scholar

[2] P.J. Carrington, M.C. Wagener, J.R. Botha, A.M. Sanchez, A. Krier, Enhanced infrared photo-response from GaSb/GaAs quantum ring solar cells, Appl. Phys. Lett. 101 (2012) 231101(1-5).

DOI: 10.1063/1.4768942

Google Scholar

[3] W. -H. Lin, C. -C. Tseng, S. -Y. Wu, M. -H. Wu, S. -Y. Lin, M. -C. Wu, The influence of background As on GaSb/GaAs quantum dots and its application in infrared photodetectors, Phys. Status Solidi C 9 (2012) 314-317.

DOI: 10.1002/pssc.201100246

Google Scholar

[4] T. Kawazu, T. Mano, T. Noda, Y. Akiyama, H. Sakaki, Growth of GaSb dots on GaAs(100) by droplet epitaxy, Phys. Status Solidi B 246 (2009) 733-735.

DOI: 10.1002/pssb.200880608

Google Scholar

[5] M. DeJarld, K. Reyes, P. Smereka, J.M. Millunchick, Mechanisms of ring and island formation in lattice mismatched droplet epitaxy, Appl. Phys. Lett. 102 (2013) 133107(1-5).

DOI: 10.1063/1.4799965

Google Scholar

[6] M. Kunrugsa, S. Kiravittaya, S. Panyakeow, S. Ratanathammaphan, Effect of Ga deposition rates on GaSb nanostructures grown by droplet epitaxy, J. Cryst. Growth 402 (2014) 285-290.

DOI: 10.1016/j.jcrysgro.2014.06.036

Google Scholar

[7] A. Nemcsics, Ch. Heyn, A. Stemmann, A. Schramm, H. Welsch, W. Hansen, The RHEED tracking of the droplet epitaxial grown quantum dot and ring structures, Mater. Sci. Eng. B 165 (2009) 118-121.

DOI: 10.1016/j.mseb.2009.02.015

Google Scholar

[8] M.A. Kamarudin, M. Hayne, Q.D. Zhuang, O. Kolosov, T. Nuytten, V.V. Moshchalkov, F. Dinelli, GaSb quantum dot morphology for different growth temperatures and the dissolution effect of the GaAs capping layer, J. Phys. D: Appl. Phys. 43 (2010).

DOI: 10.1088/0022-3727/43/6/065402

Google Scholar

[9] K. Suzuki, R.A. Hogg, Y. Arakawa, Structural and optical properties of type II GaSb/GaAs self-assembled quantum dots grown by molecular beam epitaxy, J. Appl. Phys. 85 (1999) 8349-8352.

DOI: 10.1063/1.370622

Google Scholar