An Improved Sensitivity SPR Biosensor Using Multilayer Graphene

Article Preview

Abstract:

A graphene-based Surface Plasmon Resonance (SPR) biosensor is presented. Graphene layers added to a conventional gold thin film SPR biosensor leads to a drastic increase in sensitivity due to the increased biomolecule adsorption in the graphene layers. In comparison to conventional SPR sensors this produces a large change in the refractive index at the metal-dielectric interface. The reflection of light coupled into a SPR mode propagating along a thin Au-graphene layer surrounded by dielectric is calculated and compared to a conventional SPR sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-107

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., Van Duyne, R. P., Biosensing with plasmonic nanosensors, Nature Materials. 7(6) (2008) 442 - 453.

DOI: 10.1038/nmat2162

Google Scholar

[2] Castner, D. G., Ratner, B. D., Biomedical surface science: Foundations to frontiers, Surface Science. 500 (1-3) (2002) 28 - 60.

DOI: 10.1016/s0039-6028(01)01587-4

Google Scholar

[3] Piliarik, M., Sipova, H., Kvasnicka, P., Galler, N., Krenn, J.R., Homola, J., High-resolution biosensor based on localized surface plasmons, Optics Express. 20(1) (2012) 672 - 680.

DOI: 10.1364/oe.20.000672

Google Scholar

[4] Homola, J., Surface plasmon resonance sensors for detection of chemical and biological species, Chemical Reviews. 108(2) (2008) 462 - 493.

DOI: 10.1021/cr068107d

Google Scholar

[5] McFarland, A. D., Van Duyne, R. P., Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Letters. 3(8) (2003) 1057 - 1062.

DOI: 10.1021/nl034372s

Google Scholar

[6] Homola, J., Present and future of surface plasmon resonance biosensors, Analytical and Bioanalytical Chemistry. 377 (3) (2003) 528 - 539.

DOI: 10.1007/s00216-003-2101-0

Google Scholar

[7] Homola, J., Yee, S. S., Gauglitz, G., Surface plasmon resonance sensors: review, sensors and actuators B-chemical. 54(1-2) (1999) 3 - 15.

DOI: 10.1016/s0925-4005(98)00321-9

Google Scholar

[8] Hutter, E., Fendler, J. H., Exploitation of localized surface plasmon resonance, Advanced Materials. 16(19) (2004) 1685 - 1706.

DOI: 10.1002/adma.200400271

Google Scholar

[9] Akimov, Y. A., Koh, W. S., Sian, S. Y., Ren, S., Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?, Applied Physics Letters. 96 (7) (2010).

DOI: 10.1063/1.3315942

Google Scholar

[10] Lee, K. G., Park, Q. H., Coupling of surface plasmon polaritons and light in metallic nanoslits, Physical Review Letters. 95(10) (2005).

DOI: 10.1103/physrevlett.95.103902

Google Scholar

[11] Kegel, L. L., Kim, S. S., Mizaikoff, B., Kranz, C., Booksh, K.S., Position dependent plasmonic interaction between a single nanoparticle and a nanohole array, Plasmonics. 9(5) (2014) 1229 - 1237.

DOI: 10.1007/s11468-014-9735-y

Google Scholar

[12] Virk, M., Xiong, K. L., Svedendahl, M., Kall, M., Dahlin, A. B., A thermal plasmonic sensor platform: resistive heating of nanohole arrays, Nano Letters. 14(6) (2014) 3544 - 3549.

DOI: 10.1021/nl5011542

Google Scholar

[13] Chen, B., Liu, C. J., Hayashi, K., Selective terpene vapor detection using molecularly imprinted polymer coated au nanoparticle lspr sensor, IEEE Sensors Journal. 14(10) (2014) 3458 - 3464.

DOI: 10.1109/jsen.2014.2346187

Google Scholar

[14] Cheng, X. R., Hau, B. Y. H., Endo, T., Kerman, K., Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance, Biosensors & Bioelectronics. 53 (2014) 513 - 518.

DOI: 10.1016/j.bios.2013.10.003

Google Scholar

[15] Song, B., Li, D., Qi, W., Elstner, M., Fan, C., Fang, H., Graphene on Au(111): A highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification, Chemphyschem. 11(3) (2010) 585 - 589.

DOI: 10.1002/cphc.200900743

Google Scholar

[16] Kravets, V. G., Nair, R. R., Blake, P., Ponomarenko, L. A., Riaz, I., Jalil, R., Anisimova, S., Grigorenko, A. N., Novoselov, K. S., Geim, A. K., Optics of flat carbon - spectroscopic ellipsometry of graphene flakes, Nato Sec Sci B Phys. (2011).

DOI: 10.1007/978-94-007-0044-4_1

Google Scholar

[17] Bruna, M., Borini, S., Optical constants of graphene layers in the visible range, Applied Physics Letters. 94(3) (2009).

DOI: 10.1063/1.3073717

Google Scholar

[18] Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A.K., Fine structure constant defines visual transparency of graphene, Science. 320 (5881) (2008) 1308 - 1308.

DOI: 10.1126/science.1156965

Google Scholar

[19] Yamamoto, M., Surface plasmon resonance (SPR) theory: tutorial, Review of Polarography. 48 (209) (2002).

Google Scholar

[20] Wu, L., Chu, H. S., Koh, W. S., Li, E. P., Highly sensitive graphene biosensors based on surface plasmon resonance, Optics Express. 18(14) (2010) 14395 - 14400.

DOI: 10.1364/oe.18.014395

Google Scholar

[21] Szunerits, S., Maalouli, N., Wijaya, E., Vilcot, J. P., Boukherroub, R. Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces, Analytical and Bioanalytical Chemistry. 405(5) (2013) 1435 - 1443.

DOI: 10.1007/s00216-012-6624-0

Google Scholar

[22] Tang, Z. W., Wu, H., Cort, J. R., Buchko, G. W., Zhang, Y. Y., Shao, Y. Y., Aksay, I. A., Liu, J., Lin, Y. H., Constraint of DNA on functionalized graphene improves its biostability and specificity', Small. 6(11) (2010) 1205 - 1209.

DOI: 10.1002/smll.201000024

Google Scholar