Tensile Properties of Rice Straw Fiber Reinforced Poly(Lactic Acid) Biocomposites

Article Preview

Abstract:

The poly (lactic acid) (PLA)/ rice straw (RS) composites with various RS content ratios were prepared by using heated two roll-mill. The mechanical performances of prepared PLA/ RS composites were studied. The tensile strength and elongation at break, Eb of the composite decreases as the content of rice straw fiber increases from 5% to 25% while the Young’s modulus had increases. Fourier transform infrared (FTIR) analysis demonstrates the infrared absorption of PLA after the existing of RS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

598-602

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.T. Sam, H. Ismail, Z. Ahmad, Environmental weathering of (linear low‐density polyethylene)/(soya powder) blends compatibilized with polyethylene‐grafted maleic anhydride, Journal of Vinyl & Additive Technology 18 (2012) 57-64.

DOI: 10.1002/vnl.20292

Google Scholar

[2] T. Yu, J. Ren, S. Li, H. Yuan, Y. Li, Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites, Composites: Part A 41 (2010) 499-505.

DOI: 10.1016/j.compositesa.2009.12.006

Google Scholar

[3] X. Li, L.G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review, J. Polym. Environ. 15 (2007) 25-33.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[4] M.A. Nuradibah, S.T. Sam, N.Z. Noriman, H. Ismail, Tensile and morphological properties of spear grass (Imperata cylindrica) filled low density polyethylene/ thermoplastic soya spent powder blends, Applied Mechanics and Materials 679 (2014).

DOI: 10.4028/www.scientific.net/amm.679.149

Google Scholar

[5] S.T. Sam, H. Ismail, Degradability in a natural compost medium of (linear low‐density polyethylene)/(soya powder) blends compatibilized with epoxidized natural rubber, Journal of Vinyl and Additive Technology 20 (2014) 42-48.

DOI: 10.1002/vnl.21338

Google Scholar

[6] S.T. Sam, H. Ismail, Z. Ahmad, Study on electron‐beam‐irradiated (linear low‐density polyethylene)/(soya powder) blends under outdoor exposure, Journal of Vinyl and Additive Technology 18 (2012) 241-249.

DOI: 10.1002/vnl.20327

Google Scholar

[7] L. Jiang, B. Liu, J. Jinwen, Properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) /nanoparticle ternary composites, Industrial and Engineering Chemistry Research 48 (2009) 7594-7602.

DOI: 10.1021/ie900576f

Google Scholar

[8] M.K. Yakaba, M.S. Gumel, A. Umar, R. Metelerkamp, Journal of Reinforced Plastics and Composites 29 (2010) 2855-2868.

DOI: 10.1177/0731684409358470

Google Scholar

[9] C. Nyambo, A.K. Mohanty, M. Misra, Effect of maleated compatibilizer on performance of PLA/wheat straw-based green composites, Macromolecular Materials and Engineering 296(8) (2011) 710-718.

DOI: 10.1002/mame.201000403

Google Scholar

[10] S.T. Sam, H. Ismail, Z. Ahmad, Effect of cobalt stearate on natural weathering of LLDPE/Soya powder blends, Polymer-Plastics Technology and Engineering 50 (2011) 957-968.

DOI: 10.1080/03602559.2011.553863

Google Scholar

[11] K. Oksman, M. Skrivars, J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Composites Science and Technology 63 (2003) 1317-1324.

DOI: 10.1016/s0266-3538(03)00103-9

Google Scholar

[12] L. Qin, J. Qiu, M. Liu, S. Ding, L. Shao, S. Lu, G. Zhang, Y. Zhao, X. Fu, Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly(butyl acrylate), Chemical Engineering Journal 166c (2011).

DOI: 10.1016/j.cej.2010.11.039

Google Scholar

[13] H. Y. Choi, J. S. Lee, Effects of surface treatment of ramie fibers in a ramie/poly(lactic acid) composite, Fibers and Polymers 13 (2012) 217-223.

DOI: 10.1007/s12221-012-0217-6

Google Scholar

[14] V.A. Alvarez, V.P. Cyras, A. Vazquez, J.I. Moran, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose 15(1) (2008) 149-159.

DOI: 10.1007/s10570-007-9145-9

Google Scholar