Effect of Processing Method on Thermal Behavior in PLA/PEG Melt Blending

Article Preview

Abstract:

The dispersion of PEG acts as plasticizer in PLA blends were investigated using thermal analysis. The comparisons were made between two melt processing method, twin screw extruder and two-roll mills to study how it will affect the Tg, Tc and Tm of blends in DSC analysis. The TGA behavior was also studied for two-roll mills processing method to confirm the effect of PEG loading in PLA on degradation and amount of residue left after analysis. In DSC analysis, it can be seen clearly, the PEG loading decreased the glass transition temperature in all blends compares to neat PLA. For twin screw extruder blending, the crystallization peak existed for some blend. It was difference for two-roll mills blends where the crystallization peak absent in all blends with PEG loading. The presence of PEG gave no significant variation on melting temperature peak for both processing method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-190

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Market Study Bioplastics, Ceresana, Dec 2011. www. ceresana. com/en/market-studies/plastics/bioplastics.

Google Scholar

[2] L. Avéros. Polylactic acid: synthesis, properties and applications, Chapter 21: Monomers, Polymers, and Composites from Renewable Resources, 2008; 433-50.

DOI: 10.1016/b978-0-08-045316-3.00021-1

Google Scholar

[3] R. Auras, B. Harte, S. Selke. Macromol. Biosci. 2004; 4, 835-64.

Google Scholar

[4] R.M. Rasal, A. V Janorkar, D. E Hirt. Prog. Polym. Sci., 2010; 35, 338-56.

Google Scholar

[5] A.M. Clarinval, J. Halleux. In Biodegradable Polymers for Industrial Applications, 1st Ed. (Ed. F. L Boca Raton) USA : CRC Press, pp.3-31.

Google Scholar

[6] S. Jacobsen, HG Fritz. Polym. Eng. Sci., 1999; 39, 1303–1310.

Google Scholar

[7] O. Martin, L. Averous. Polymer, 2001; 42, 6209–6219.

Google Scholar

[8] K. Oksman, M. Skrifvars, JF Selin. Comp. Sci. Tech., 2003; 63, 1317–1324.

Google Scholar

[9] N. Ljungberg, T. Andersson, B. Wesslen. J. Appl. Polym. Sci., 2003; 88, 3239–3247.

Google Scholar

[10] N. Ljungberg, B. Wesslen. Biomacromolecules 2005; 6, 1789–1796.

Google Scholar

[11] N. Ljungberg, B. Wesslen. Polymer 2003; 44, 7679–7688.

Google Scholar

[12] M. Murariu, A.D.S. Ferreira, M. Pluta, et al. Euro. Polym. J. 2008; 44, 3842–3852.

Google Scholar

[13] S. Jacobsen, H.G. Fritz. Polym. Eng. Sci., 1999; 39, 1303–1310.

Google Scholar

[14] Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner, E. Baer. Polymer, 2003; 44, 5681–5689.

DOI: 10.1016/s0032-3861(03)00609-8

Google Scholar

[15] Y. Hu, M. Rogunova, V. Topolkaraev, A. Hiltner, E. Baer. Polymer, 2003; 44, 5701–5710.

DOI: 10.1016/s0032-3861(03)00614-1

Google Scholar

[16] Z. Kulinski, E. Piorkowska, K. Gadzinowska, M. Stasiak. Biomacromolecules, 2006; 7, 2128–2135.

DOI: 10.1021/bm060089m

Google Scholar

[17] Q. Fang, M.A. Hanna. Ind. Crops. Prod. 1999; 10, 47-53.

Google Scholar

[18] J.R. Dorgan, H.J. Lehermeier, M. Mang. J. Polym. Environ. 2000; 8, 1-9.

Google Scholar

[19] H.J. Lehermeier, J.R. Dorgan. Poly(lactic acid) properties and prospect of an environmentally benign plastic: melt rheology of linear and branched blends. In: Fourteenth symposium on thermophysical properties, (2000).

Google Scholar

[20] W. Zhang, S. Zheng. Polym. Bull. 2007; 58, 767-75.

Google Scholar

[21] H.J. Lehermeier, J.R. Dorgan. Polym. Eng. Sci. 2001; 41, 2172-84.

Google Scholar