[1]
A.R. Chong, J.A. Ramirez, G. Garrote, M. Vazquez, Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment, Journal of Food Engineering 61 (2004) 143-152.
DOI: 10.1016/s0260-8774(03)00080-3
Google Scholar
[2]
Y. Lu, N. S. Mosier, Kinetic Modeling Analysis of Maleic Acid Catalyzed Hemicellulose Hydrolysis in Corn Stover, Biotechnology and Bioengineering, 101 (2008) 1170-1181.
DOI: 10.1002/bit.22008
Google Scholar
[3]
J. F. Saeman, Kinetics of Wood Saccharification-Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature, Industrial and Engineering Chemistry 37 (1945) 43-52.
DOI: 10.1021/ie50421a009
Google Scholar
[4]
A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl. 59 (2010) 1326-1336.
DOI: 10.1016/j.camwa.2009.07.006
Google Scholar
[5]
S. Kazem, S. Abbasbandy, Sunil Kumar, Fractional-order Legendre functions for solving fractional- order differential equations, Appl. Math. Modelling, 37 (2013) 5498-5510.
DOI: 10.1016/j.apm.2012.10.026
Google Scholar
[6]
E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model. 35 (2011) 5662-5672.
DOI: 10.1016/j.apm.2011.05.011
Google Scholar
[7]
A.H. Bhrawy, A.S. Alofi, S.S. Ezz-Eldien, A quadrature tau method for fractional differential equations with variable coefficients, Applied Mathematics Letters 24 (2011) 2146-2152.
DOI: 10.1016/j.aml.2011.06.016
Google Scholar
[8]
E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl. 62 (2011) 2364-2373.
DOI: 10.1016/j.camwa.2011.07.024
Google Scholar
[9]
E.H. Doha , A.H. Bhrawy , S.S. Ezz-Eldien, A new Jacobi operational matrix: An application for solving fractional differential equations, Applied Mathematical Modelling 36 (2012) 4931-4943.
DOI: 10.1016/j.apm.2011.12.031
Google Scholar
[10]
B. Bede, S.G. Gal, Generalizations of the differentiability of fuzzy number value functions with applications to fuzzy differential equations, Fuzzy Sets and Systems 151 (2005) 581-599.
DOI: 10.1016/j.fss.2004.08.001
Google Scholar
[11]
A. Ahmadian, M. Suleiman, S. Salahshour, D. Baleanu, A Jacobi operational matrix for solving fuzzy linear fractional differential equation, Adv. Difference Equ. 2013 (2013): 104.
DOI: 10.1186/1687-1847-2013-104
Google Scholar
[12]
A Ahmadian, S. Salahshour, D. Baleanu, H. Amirkhani, R. Yunus, Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the Oil Palm Frond as a promising source of xylose, Journal of Computational Physics, 294 (2015).
DOI: 10.1016/j.jcp.2015.03.011
Google Scholar
[13]
M.L. Puri, D. Ralescu, Differential for fuzzy function, Journal of Mathematical Analysis and Applications, 91 (1983) 552-558.
Google Scholar
[14]
S. Salahshour, T. Allahviranloo, S. Abbasbandy, D. Baleanu, Existence and uniqueness results for fractional differential equations withuncertainty, Advances in Difference Equations 2012, 2012: 112.
DOI: 10.1186/1687-1847-2012-112
Google Scholar