[1]
Bifano T G, Dow T A, Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 1991Annals-Manufacturing Technology, (1994).
DOI: 10.1115/1.2899676
Google Scholar
[2]
Kirchner H P. Damage Penetration at Elongated Machining Grooves in Hot-Pressed Si3N4[J]. Journal of the American Ceramic Society, (1984).
DOI: 10.1111/j.1151-2916.1984.tb09629.x
Google Scholar
[3]
Neo W K, Kumar A S, Rahman M. A review on the current research trends in ductile regime machining[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(5-8): 465-480.
DOI: 10.1007/s00170-012-3949-y
Google Scholar
[4]
Adams M J, Allan A, Briscoe B J, et al. An experimental study of the nano-scratch behaviour of poly (methyl methacrylate)[J]. Wear, (2001).
DOI: 10.1016/s0043-1648(01)00798-0
Google Scholar
[5]
Wang J G, Choi B W, Nieh T G, et al. Nano-scratch behavior of a bulk Zr-10Al-5Ti-17. 9 Cu-14. 6 Ni amorphous alloy[J]. Journal of materials research-pittsburgh-, (2000).
DOI: 10.1557/jmr.2000.0130
Google Scholar
[6]
Huang L Y, Xu K W, Lu J, et al. Analysis of nano-scratch behavior of diamond-like carbon films[J]. Surface and Coatings Technology, (2002).
DOI: 10.1016/s0257-8972(02)00007-5
Google Scholar
[7]
Consiglio R, Randall N X, Bellaton B, et al. The nano-scratch tester (NST) as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films[J]. Thin Solid Films, (1998).
DOI: 10.1016/s0040-6090(98)00987-0
Google Scholar
[8]
Puttick K E, Rudman M R, Smith K J, et al. Single-point diamond machining of glasses[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, (1989).
Google Scholar
[9]
Jardret V, Zahouani H, Loubet J L, et al. Understanding and quantification of elastic and plastic deformation during a scratch test[J]. Wear, (1998).
DOI: 10.1016/s0043-1648(98)00200-2
Google Scholar
[10]
Courtney T H. Mechanical behavior of materials[M]. Waveland Press, (2005).
Google Scholar
[11]
Subhash G, Loukus J E, Pandit S M. Application of data dependent systems approach for evaluation of fracture modes during a single-grit scratching[J]. Mechanics of materials, (2002).
DOI: 10.1016/s0167-6636(01)00083-7
Google Scholar
[12]
Youn S W, Kang C G. FEA study on nanodeformation behaviors of amorphous silicon and borosilicate considering tip geometry for pit array fabrication[J]. Materials Science and Engineering: A, (2005).
DOI: 10.1016/j.msea.2004.08.041
Google Scholar
[13]
Zhao LL, High efficient precision grinding of optical glasses with the coarse-grained diamond wheel. Dissertation, Harbin Institute of Technology, (2013).
Google Scholar
[14]
Lee S H. Analysis of ductile mode and brittle transition of AFM nanomachining of silicon[J]. International Journal of Machine Tools and Manufacture, (2012).
DOI: 10.1016/j.ijmachtools.2012.05.011
Google Scholar
[15]
Guo B, Zhao Q. Wheel normal grinding of hard and brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 2015.
Google Scholar
[16]
Feng P F, Zhang C L, Wu Z J, et al. Effect of Scratch Velocity on Deformation Features of C-plane Sapphire during Nanoscratching[J]. Strojniški vestnik-Journal of Mechanical Engineering, (2013).
DOI: 10.5545/sv-jme.2012.679
Google Scholar