[1]
I. Soko´ lska, S. Gołab , W. Ryba-Romanowski, Optical spectroscopy of doped LiTaO3 crystals, Spectrochim. Acta, Part A. 54 (1998) 1685-1694.
DOI: 10.1016/s1386-1425(98)00098-5
Google Scholar
[2]
J.L. Jackel, R.E. Howard, and E. L Hu, Reactive ion etching of LiNbO3, Appl. Phys. Lett. 38 (1981) 907-909.
DOI: 10.1063/1.92177
Google Scholar
[3]
C.X. Ren, J. Yang, Y.F. Zheng, L. Z Chen, G.L. Chen, and S.C. Tsou, Reactive ion beam etching characteristics of lithium niobate, Nucl. Instr. Meth. B 19 (1987) 1018-1021.
Google Scholar
[4]
H.S. Lee, H.D. Jeong, D.A. Dornfeld, Semi-empirical material removal rate distribution model for SiO2 chemical mechanical polishing (CMP) processes, Precis. Eng. 37 (2013) 483-490.
DOI: 10.1016/j.precisioneng.2012.12.006
Google Scholar
[5]
H. Lee, S. Park, H. Jeong, Evaluation of environmental impacts during chemical mechanical polishing (CMP) for sustainable manufacturing, J. Mech. Sci. Technol. 27(2) (2013) 511-518.
DOI: 10.1007/s12206-012-1241-6
Google Scholar
[6]
H. Lee, Y. Park, S. Lee, H. Jeong, Effect of wafer size on material removal rate and its distribution in chemical mechanical polishing of silicon dioxide film, J. Mech. Sci. Technol. 27(10) (2013) 2911-2916.
DOI: 10.1007/s12206-013-0802-7
Google Scholar
[7]
Z.D. Gao, Q.J. Wang, Y. Zhang, and S. N Zhu, Etching study of poled lithium tantalate crystal using wet etching technique with ultrasonic assistance, Opt. Mater. 30 (2008) 847-850.
DOI: 10.1016/j.optmat.2007.03.005
Google Scholar
[8]
X. Wei, H. Yuan, H.W. Du, W. Xiong, and R. W Huang, Study on Chemical Mechanical Polishing Mechanism of LiTaO3 Wafer, Key Eng. Mater. 304-305 (2006) 310-314.
DOI: 10.4028/www.scientific.net/kem.304-305.310
Google Scholar
[9]
Hyunseop Lee, Boumyoung Park, Heondeok Seo, Onemoon Chang, and Haedo Jeong, The Korea Soc. Mech. Engineers 29 (2005) 1276.
Google Scholar
[10]
V.R.K. Gorantla, K.A. Assiongbon, S.V. Babu, D. Roy, Citric Acid as a Complexing Agent in CMP of Copper, J. electrochem. Soc. 152 (2005) G404-G410.
DOI: 10.1149/1.1890786
Google Scholar
[11]
H. Lee, B. Park, H. Jeong, Influence of slurry components on uniformity in copper chemical mechanical planarization, Microelectron. Eng. 85 (2008) 689-696.
DOI: 10.1016/j.mee.2007.12.044
Google Scholar
[12]
D.H. Eom, I.K. Kim, J.H. Han, and J. G. Park, The Effect of Hydrogen Peroxide in a Citric Acid Based Copper Slurry on Cu Polishing, J. Electrochem. Soc. 154 (2007) D38-D44.
DOI: 10.1149/1.2393015
Google Scholar
[13]
F. W Preston, The theory and design of plate glass polishing Machines, J. Soc. Glass Technol. 11 (1927) 214-256.
Google Scholar
[14]
Danilo Castillo-Mejia and Stephen Beaudoin, A Locally Relevant Prestonian Model for Wafer Polishing, J. Electrochem. Soc. 150(2) (2003) G96-G102.
DOI: 10.1149/1.1532330
Google Scholar
[15]
H. Lee, B. Park, H. Jeong, Mechanical effect of process condition and abrasive concentration on material removal rate profile in copper chemical mechanical planarization, J. Mater. Proc. Technol. 209 (2009) 1729-1735.
DOI: 10.1016/j.jmatprotec.2008.04.021
Google Scholar