Fundamental Investigation of Ultrasonic Assisted Surface Grinding of Inconel 718

Article Preview

Abstract:

Inconel 718 has high yield strength, corrosion resistance, heat resistance and fatigue resistance, and possesses a lower thermal conductivity, leading to high grinding force and heavy wheel damage in grinding of this material. Against these problems, ultrasonic assisted grinding (UAG) can be the potential candidate for high efficiency processing of Inconel 718. The current work is, hence, to clarify the fundamental UAG characteristics of Inconel 718 by experimentally investigating the effect of vibration amplitude on grinding force, actual material removal and work-surface roughness under different process parameters such as the wheel rotational speed, wheel depth of cut and vibration amplitude. Summarizing the obtained results revealed that the grinding forces and the actual material removal in UAG are significantly smaller and larger, respectively, than those in conventional grinding. It is also found that ultrasonic vibration can improve the work-surface finish even at deep wheel depth of cut.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

365-370

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Sharman, R.C. Dewes, D.K. Aspinwall, Tool life when high speed ball nose end milling Inconel 718, Journal of Materials Processing Technology, 118 , 2001, p.29–35.

DOI: 10.1016/s0924-0136(01)00855-x

Google Scholar

[2] A.R.C. Sharman, J.I. Hughes, K. Ridgway, The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718, Journal of Materials Processing Technology, 216, 2015, p.123–132.

DOI: 10.1016/j.jmatprotec.2014.09.002

Google Scholar

[3] E.O. Ezugwu, Z.M. Wang, A.R. Machado, The machinability of nickel-based alloys: a review, Journal of Materials Processing Technology, 86, 1999, p.1–16.

DOI: 10.1016/s0924-0136(98)00314-8

Google Scholar

[4] Basim A. Khidhir, Bashir Mohamed, Machining of nickel based alloys using different cemented carbide tools, Journal of Engineering Science and Technology, 5 (3), 2010, p.264–271.

Google Scholar

[5] T. Kitagawa, A. Kubo, K. Maekawa b, Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn, Wear, 202, 1997, p.142–148.

DOI: 10.1016/s0043-1648(96)07255-9

Google Scholar

[6] F. Zemzemi, J. Rech, W. Ben Salem, Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an Inconel 718 alloy with CBN and coated carbide tools, Advances in Manufacturing Science and Technology, 38 (1), 2014, pp.5-22.

DOI: 10.2478/amst-2014-0001

Google Scholar

[7] ASME 2009 International Manufacturing Science and Engineering Conference, Experimental Investigations Into the Carbide Cracking Phenomenon on Inconel 718 Superalloy Material, West Lafayette, Indiana, USA, (2009).

DOI: 10.1115/msec2009-84085

Google Scholar

[8] Pei-Lum Tso, Study on the grinding of Inconel 718, Journal of Materials Processing Technology, 55, 1995, pp.421-426.

DOI: 10.1016/0924-0136(95)02026-8

Google Scholar

[9] D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquère, V. Zerrouki, J. Vigneau, A review of developments towards dry and high speed machining of Inconel 718 ally, International Journal of Machine Tools & Manufacture, 44, 2004, p.439–456.

DOI: 10.1016/s0890-6955(03)00159-7

Google Scholar

[10] Mohd Fauzi Ismail, Kazuhisa Yanagi, Hiromi Isobe, Geometrical transcription of diamond electroplated tool in ultrasonic vibration assisted grinding of steel, International Journal of Machine Tools & Manufacture, 62, 2012, pp.24-31.

DOI: 10.1016/j.ijmachtools.2012.06.003

Google Scholar

[11] Mohsen Ghahramani Nik, Mohammad R. Movahhedy, Javad Akbari, Ultrasonic-Assisted Grinding of Ti6Al4V Alloy, Procedia CIRP, 2012, 1, p.353 – 358.

DOI: 10.1016/j.procir.2012.04.063

Google Scholar

[12] Toshiyuki Enomoto, Hironori Shigeta, Tatsuya Sugihara, Urara Satake, A new surgical grinding wheel for suppressing grinding heat generation in bone resection, CIRP Annals- Manufacturing Technology, 63, 2014, p.305–308.

DOI: 10.1016/j.cirp.2014.03.026

Google Scholar

[13] Y.S. Liao, Y.C. Chen, H.M. Lin, Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy, International Journal of Machine Tools & Manufacture, 47, 2007, p.1988–(1996).

DOI: 10.1016/j.ijmachtools.2007.02.001

Google Scholar

[14] Zhiqiang Liang, Yongbo Wu, Xibin Wang, Wenxiang Zhao, A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining, International Journal of Machine Tools & Manufacture, 50, 2010, pp.728-736.

DOI: 10.1016/j.ijmachtools.2010.04.005

Google Scholar

[15] Prof. Dr. h. c. mult. Dr. -Ing. G. Spur, Dipl. -Ing. S. -E. Ho11, Ultrasonic assisted grinding of ceramics, Materials Processing Technology, 6, 1996, pp.287-293.

Google Scholar

[16] Z.J. Pei, P.M. Ferreira, S.G. Kapoor, M. Haselkorn, Rotary ultrasonic machining for face milling of ceramics, International Journal of Machine Tools and Manufacturel, 35 (7), pp.1033-1046.

DOI: 10.1016/0890-6955(94)00100-x

Google Scholar

[17] D.F. Liu, W.L. Cong, Z.J. Pei, Yong Jun Tang, A cutting force model for rotary ultrasonic machining of brittle materials, International Journal of Machine Tools & Manufacture, 52, 2012, p.77–84.

DOI: 10.1016/j.ijmachtools.2011.09.006

Google Scholar

[18] D. Bhaduri, S.L. Soo, D.K. Aspinwall, A study on ultrasonic assisted creep feed grinding of nickel based superalloys, Procedia CIRP, 1, 2012, p.359 – 364.

DOI: 10.1016/j.procir.2012.04.064

Google Scholar

[19] D. Bhaduri, S.L. Soo, D. Novovic, D.K. Aspinwall, P. Harden, C. Waterhouse, Ultrasonic assisted creep feed grinding of Inconel 718, Procedia CIRP, 6, 2013, 616-621.

DOI: 10.1016/j.procir.2013.03.044

Google Scholar