[1]
J.W. Sowards, J.C. Lippold, D.W. Dickinson, A.J. Ramirez, Characterization of welding fume from SMAW electrodes. Part. I, Welding J. 87 (2008) 106-112.
Google Scholar
[2]
J.W. Sowards, A.J. Ramirez, D.W. Dickinson, J.C. Lippold, Characterization of welding fume from SMAW electrodes. Part II, Welding J. 89 (2010) 82-90.
Google Scholar
[3]
B. Berlinger, N. Benker, S. Weinbruch, B. L`Vov, M. Ebert, W. Koch, D. G. Ellingsen, Y. Thomassen, Physicochemical characterisation of different welding aerosols, Anal. Bioanal. Chem. 399 (2011) 1773-1780.
DOI: 10.1007/s00216-010-4185-7
Google Scholar
[4]
R. Dastanpour, S. N. Roga, The effect of primary particle polydispersity on the morphology and mobility diameter of the fractal agglomerates in different flow regimes, J. Aerosol Sci. 94 (2016) 22-32.
DOI: 10.1016/j.jaerosci.2015.12.005
Google Scholar
[5]
M. Oprya, S. Kiro, A. Worobiec B., Horemans, L. Darchuk, V. Novakovic, A. Ennan, R. Van Grieken, Size distribution and chemical properties of welding fumes of inhalable particles, J. Aerosol Sci. 45 (2012) 50-57.
DOI: 10.1016/j.jaerosci.2011.10.004
Google Scholar
[6]
T.L. Rakitskaya, A.S. Truba, А.A. Ennan, S.A. Kiro, V.Y. Volkova, Phase composition and catalytic activity of nanostructured materials based on solid component of welding aerosol, Solid State Phenomena. 230 (2015) 279-284.
DOI: 10.4028/www.scientific.net/ssp.230.279
Google Scholar
[7]
T. Rakitskaya, A. Truba, A. Ennan, V. Volkova, Nanostructured polyphase catalysts based on the solid component of welding aerosol for ozone decomposition, Nanoscale Res. Lett. 10 (2015) 473.
DOI: 10.1186/s11671-015-1186-7
Google Scholar
[8]
H. Zhang, G. Zhu, One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric, Appl. Surf. Sci. 258 (2012) 4952-4959.
DOI: 10.1016/j.apsusc.2012.01.127
Google Scholar
[9]
J. Matulevicius, L. Kliucininkas, T. Prasauskas, D. Buivydiene, D. Martuzevicius, The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media, J. Aerosol Sci. 92 (2016).
DOI: 10.1016/j.jaerosci.2015.10.006
Google Scholar
[10]
H. Valdes, S. Alejandro, C.A. Zaror, Natural zeolite reactivity towards ozone: The role of compensating cations, J. Hazard. Mater. 227-228 (2012) 34-40.
DOI: 10.1016/j.jhazmat.2012.04.067
Google Scholar
[11]
T.L. Rakitskaya, A.S. Truba, L.A. Raskola, A.А. Еnnan, Natural clinoptilolite modified with manganese(II) chloride in the reaction of ozone decomposition, Chem. Phys. Technol. Surf. 4 (2013) 297-304 (in Russian).
Google Scholar
[12]
R. Radhakrishnan, S.T. Oyama, Y. Ohminami, K. Asakura, Structure of MnOx/Al2O3 Catalysts: A study using EXAFS, in situ laser Raman spectroscopy and at calculations, J. Phys. Chem. 105 (2001) 9067-9070.
DOI: 10.1021/jp004480s
Google Scholar
[13]
M. Wang, P. Zhang, J. Li, C. Jiang, The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon, Chinese J. Catal. 3 (2014) 335-341.
DOI: 10.1016/s1872-2067(12)60756-6
Google Scholar
[14]
P. Nikolov, K. Genov, P. Konova, K. Milenova, T. Batakliev, V. Georgiev, N. Kumar, D. K Sarker, D. Pishev, S. Rakovsky, Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature, J. Hazard. Mater. 184 (2010) 16-19.
DOI: 10.1016/j.jhazmat.2010.07.056
Google Scholar
[15]
A.A. Ennan, S.A. Kiro, M.V. Oprya, V.I. Vishnyakov, Particle size distribution of welding fume and its dependency on conditions of shielded metal arc welding, J. Aerosol Sci. 64 (2013) 103-110.
DOI: 10.1016/j.jaerosci.2013.06.006
Google Scholar