Development of a Laser Triangulation Gauge for High Precision Strip Thickness Control

Article Preview

Abstract:

Almost all metal strips with thicknesses of < 2 mm are produced by cold rolling. Thickness variations of cold rolled strips are caused by various factors like fluctuation in strength of the material, the eccentricity of the rolls or thickness variation of the incoming strip. As the demands concerning the thickness variation are ever increasing the Institute of Automatic Control and the Institute of Metal Forming aim at reducing the thickness tolerance of thin, cold-rolled steel and copper strips to 1 μm. As high frequency disturbances are expected, it is assumed that this goal can only be achieved by using a predictive controller in combination with a high precision strip thickness gauge and, for roll adjustment, a piezoelectric actuator in addition to the existing electromechanical actuator. The objective of this work is the constructive implementation and the testing of a thickness gauge based on laser triangulation. The gauge includes guide rollers to prevent strip vibration, a C-frame to allow an inline calibration and mechanical adjustment of the measuring range so that even flexible strip thicknesses can be measured. The designed gauge showed a high repeat accuracy of 0.4 μm for two different metal strips. Furthermore the gauge was used to investigate the dynamics of the thickness change of a steel strip at maximum rolling speed of 5 m/s using a Fourier transformation. This frequency analysis supports the need for a piezoelectric actuator that can also subsequently be dimensioned based on the obtained frequency data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-114

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DIN EN 10140, Kaltband-Grenzabmaße und Formtoleranzen, Beuth Verlag GmbH, Berlin, (2006).

DOI: 10.31030/9708467

Google Scholar

[2] DIN EN 13599, Kupfer und Kupferlegierungen – Platten, Bleche und Bänder aus Kupfer für die Anwendung in der Elektrotechnik, Beuth Verlag GmbH, Berlin, (2014).

DOI: 10.31030/2251682

Google Scholar

[3] J. Walladchek, Sensoren und Aktoren, in: W. Steinhilper, B. Sauer (Eds. ), Konstruktionselemente des Maschinenbaus 2, Springer-Verlag, Berlin, 2012, pp.665-705.

DOI: 10.1007/978-3-540-76654-4_9

Google Scholar

[4] A. Fricke, D. Günzel, T. Schaeffer, Bewegungstechnik – Konzipierung und Auslegung von mechanischen Getrieben, Carl Hanser Verlag, München, (2015).

DOI: 10.3139/9783446444102.fm

Google Scholar

[5] F. Zhang, Y. Zhang, J. Hou, L. Huang, Research and Application of Thickness Control Strategies in Steel Plate Rolling, The Open Automation and Control Systems Journal, 6, (2014) 1638-1644.

DOI: 10.2174/1874444301406011638

Google Scholar

[6] Information on http: /www. friedrichvollmer. de/de/produkte-kontaktmessgeraete. html (seen 5th March 2016).

Google Scholar

[7] J. Dreyer, Zur Dickenmessung von Stahlblechen im Fertigungsprozeß, Dissertation, RWTH Aachen University (1997).

Google Scholar

[8] J. Krautkrämer, Werkstoffprüfung mit Ultraschall, Springer, Berlin, (1986).

Google Scholar

[9] S. Sicon, M. Potter, B. Lanyon, Characterisation of thickness and crystallographic texture of sheet using non-contact ultrasonic measurement, Ironmaking and Steelmaking 32 (2005) 385-390.

DOI: 10.1179/174328105x71263

Google Scholar

[10] N. Fuse, K. Kaneshige, H. Watanabe, Development of Thickness Measurement System for Hot Steel with Laser-Ultrasonic Wave Technology, Materials Transactions 55 (2014) 1011-1016.

DOI: 10.2320/matertrans.i-m2014811

Google Scholar