New Approach for Closed Loop Control of Deep Drawing Process for a Control Intervention during Deep Drawing Stroke

Article Preview

Abstract:

The production of irregularly shaped deep drawing parts with high quality requirements, which are common in today’s automotive body shell production, consistently challenge production processes. This challenge results from the high design requirements and automotive lightweight design, and hence the necessary use of high strength steels. Metal forming technology deals with these challenges using highly sophisticated methods to control the material flow. Several control loop methods have existed already in order to control the material flow in deep drawing processes, but only methods with a control intervention between two strokes. However, this kind of control method merely allows control intervention on measurements on the previous part or on measurements of material properties before the actual process. The method developed at the Institute for Metal Forming Technology in Stuttgart makes a control intervention possible during the deep drawing stroke. The used reference variable is the part wall stress and the control variable is the blankholder force, which is manipulated by using the segment elastic blankholder as an actuator. In this paper the experimental setup, the control methods, and the control loop itself will be presented. Furthermore, the developments of the new method will be described.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-90

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lutz-Eike, E.: Einsatz elastischer Niederhaltersysteme zur Erweiterung der Prozeßgrenzen beim Tiefziehen. Dr. -Ing. Dissertation, Universität Hannover, (2001).

Google Scholar

[2] Bräunlich, H.: Blecheinzugsregelung beim Tiefziehen mit Niederhalter – ein Beitrag zur Erhöhung der Prozessstabilität. Dr. -Ing. Dissertation, Technische Universität Chemnitz, (2002).

Google Scholar

[3] Thoms, V.: Anpassung der Werkzeugsysteme zur Blechumformung an die Umformmaschine. Blech Rohre Profile, Jahrgang 40, Heft 5 1993, S. 375ff.

Google Scholar

[4] Neugebauer, R.; Hoffmann, M.; Roscher, H. -J.; Scheffler, S; Wolf, K.: Control of sheet-metal forming processes with piezoactuators in smart structures. Proc. SPIE6171, Industrial and Commercial Applications of Smart Structures Technologies, 61710E, (2006).

DOI: 10.1117/12.657387

Google Scholar

[5] Neugebauer, R.; Mainda, P.; Drossel, W.G.; Kerschner, M.; Wolf, K.: Integrated piezoelectric actuators in deep drawing tools. Proc. SPIE7979, Industrial and Commercial Applications of Smart Structures Technologies, 79790F, (2011).

DOI: 10.1117/12.879888

Google Scholar

[6] Faaß, I.: Prozessregelung für die Fertigung von Karosserieteilen in Presswerken. Dissertation, Technische Universität München, (2009).

Google Scholar

[7] Mork, R.: Qualitätsbewertung und –regelung für die Fertigung von Karosserieteilen in Presswerken auf Basis Neuronaler Netze, Dissertation, Technische Universität München, (2011).

Google Scholar

[8] Thoms, V.; Schatz, M.: Regelung des Werkstoffflusses in Niederhaltersystemen von Zieh- und Nachformwerkzeugen durch Piezoaktoren. Forschungsbericht Nr. 278 Europäische Forschungsgesellschaft für Blechverarbeitung e.V., (2008).

Google Scholar

[9] Neumann, A.: Konzept zur Beherrschung der Prozessschwankungen im Presswerk. Dr. -Ing. Dissertation, Universität Erlangen, (2013).

Google Scholar

[10] Siegert, K.; Liewald, M.: Robuster Tiefziehprozess durch Ziehsickenstabhöhenregelung. Düsseldorf: Springer-VDI-Verlag: wt Werkstattstechnik online Heft 10, S. 781-791, (2007).

DOI: 10.37544/1436-4980-2007-10-781

Google Scholar

[11] Häussermann, M.: Zur Gestaltung von Tiefziehwerkzeugen, Dr. -Ing. Dissertation, Universität Stuttgart, IFU, (2002).

Google Scholar

[12] Hengelhaupt, J.; Vulcan, M.: Task 1b: Robust Deep Drawing Process of an Experimental Part. Bericht, Department of Energy, USA, (2006).

Google Scholar

[13] Beck, S.: Optimierung der Zargenspannung beim Ziehen unregelmäßiger Blechformteile. Dr. -Ing. Dissertation, Universität Stuttgart, IFU, (2004).

Google Scholar

[14] Blaich, C.: Robuster Tiefziehprozess durch Erfassung und Optimierung der örtlichen Bauteilqualität, Dr. -Ing. Dissertation, Universität Stuttgart, IFU, (2011).

Google Scholar

[15] Liewald, M.; Blaich, C.: Approaches for Closed-loop Control and Optimization of Deep Drawing Processes, in: Proceedings of the Ansys Conference and 27 th CAD FEM Users Meeting, Leipzig, (2009).

Google Scholar

[16] Liewald, M.; Blaich, C.: Approaches for Evaluation of Robustness and Optimization of Deep Drawing Processes, Proceedings of the 9th International Stuttgart Symposium on Automotive and Engine Technology, (2009).

Google Scholar

[17] Liewald, M.; Wurster, K.; Blaich, C.: New Approaches on Automated Wrinkle Detection in Sheet Metal Components by Forming Simulation, ESA Form, (2011).

DOI: 10.1063/1.3589677

Google Scholar

[18] Kraft, M., Liewald, M.: Voraussetzungen und Randbedingungen zur Onlineüberwachung des Platineneinlaufs von Karosseriekomponenten für Regeleingriffe in den Tiefziehprozess, (2015).

Google Scholar

[19] Hishida, Y.; Wagoner, R., H.: Experimental Analysis of Blank Holding Force Control in Sheet Metal Forming, SAE 930285, pp.93-99, (1993).

DOI: 10.4271/930285

Google Scholar

[20] Doege, E.; Kracke, M.: Vorhersage der Faltenbildung in geneigten Ziehteilzargen mit elementaren Ansätzen. Blech Rohre Profile, S. 54-61, 11/(1998).

Google Scholar