First Principles Study of Structural and Electronic Properties of ErX (X=Cu, Ag and Au) Intermetallics

Article Preview

Abstract:

The electronic structures, densities of states and Fermi surfaces of ErX (X = Cu, Ag and Au) intermetallic compounds are studied using full potential linear augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA) for the exchange-correlation functional. The total energies are computed as a function of volume and fitted to the Birch equation of state. The ground state properties such as equilibrium lattice constants (a0), bulk modulus (B) and pressure derivative of bulk modulus (B') and density of states at the Fermi level N (EF) are calculated. The states at the Fermi level (EF) are dominated by Er ‘d states with significant contribution of ‘p and ‘d states of X. We have also plotted charge density and Fermi surface to study the bonding properties of ErX compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-83

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sarkar, S.C. Peter, Single crystal growth of europium and ytterbium based intermetallic compounds using metal flux technique, J. Chem. Sci. 124 (2012) 1385-1390.

DOI: 10.1007/s12039-012-0335-0

Google Scholar

[2] C.M. Aerts, P. Strange, M. Horne, W.M. Temmerman, Z. Sizotek, A. Svane, Half-metallic to insulating behavior of rare earth nitrides, Phy. Rev. B 69 (2004) 045115(1-6).

DOI: 10.1103/physrevb.69.045115

Google Scholar

[3] Jr.K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C. Chester Lo, Y. Ye, A. Slager, D. Kesse, A family of ductile intermetallic compound, Nat. Mater. 2 (2003) 587-590.

DOI: 10.1038/nmat958

Google Scholar

[4] S. Yao-jun, D. Yu-lei, C. Guang, First-principle calculations of ductile CeAg inter metallic compound, Trans. Non ferrous Met. Soc. China 22 (2012) 654-660.

Google Scholar

[5] M. Divis, J. Kurielach, Crystal field in rare earth intermetallics with CsCl structure, Physica B 205 (1995) 353-364.

DOI: 10.1016/0921-4526(94)00613-z

Google Scholar

[6] P. Morin, J. Pierre, J. Rossat Mignod, K. Knorn, W. Drexel, Crystal fields in ErCu, ErAg and ErZn, Phys. Rev. B 9 (1994) 4932-4938.

DOI: 10.1103/physrevb.9.4932

Google Scholar

[7] J. Pierrie, P. Morin, D. Schmitt, B. Hennion, Magnetic exitations in the cubic antiferromagnetic ErCu, Le Journal De Physique 39 (1978) 793-797.

DOI: 10.1051/jphys:01978003907079300

Google Scholar

[8] C. C. Chao, H. L. Luo, P. Duwez, CsCl‐type compounds in binary alloys of rare‐earth metals with gold and silver, J. Appl. Phys. 34 (1963) (1971).

DOI: 10.1063/1.1729720

Google Scholar

[9] P. Blaha, Schwarz, G. K. H. Kmadsen, D Kuasnicka, and J. Luitz, WIEN2K, an augmented planewave+local orbitals program for calculating crystal properties, (2001). K. Schwarz Technical Universitat, Wien, Austria, ISBN 3-9501031-1-2.

Google Scholar

[10] J. P. Perdew, K. Burke, M. Ernzerhop, Genaralized gradient- approximation made simple, Phys Rev Lett 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[11] H. J. Monkhorst, J. D. Pack, On special points for Brillouin zone integration, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[12] F. Birch, The effect of pressure upon the elastic properties of isotropic solids according to Murnagham's theory of finite strain, J. Appl. Phys. 9 (1938) 279-288.

DOI: 10.1063/1.1710417

Google Scholar

[13] K.A. Gschneidner Jr, M. Ji, K.M. Ho, A.M. Russell, Y. Mudryk, J.L. Larson, Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics, Acta materialia 57 (2009) 5876. -5881.

DOI: 10.1016/j.actamat.2009.08.012

Google Scholar