Mechanistic Insight into H2S Adsorption and Dissociation on MoP(010): A Density Functional Investigation

Article Preview

Abstract:

H2S adsorption and dissociation on MoP(010) were investigated using density functional theory (DFT) together with periodic slab models. Several different possibilities for H2S, SH, S and H adsorption were considered. Our results show that the H2S, SH and H prefer to adsorb at bridge site, while S adsorbs preferentially at hcp and bridge sites. Additionally, the optimum co-adsorption configurations for SH/H and S/H were determined. The results indicate that the co-adsorbed species repel each other slightly on MoP(010) surface. Finally, the potential energy profile of H2S dissociation on MoP(010) surface was given out. The dissociation energy barriers of the S–H bond scission exhibit that H2S prefers to dissociate on MoP(010) surface. When compared with MoP(001) surface, the obvious differences in H2S decomposition arise demonstrate that the MoP-based catalysts are structure-sensitive.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

300-305

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Speight, J. G. The Chemistry and Technology of Petroleum. Dekker, New York, (1991).

Google Scholar

[2] P. G. Moses, B. Hinnemann, H. Topsøe, J. K. Nørskov, The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study, J. Catal. 248 (2007).

DOI: 10.1016/j.jcat.2008.09.008

Google Scholar

[3] P. G. Moses, B. Hinnemann, H. Topsøe, J. K. Nørskov, The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: A density functional study, J. Catal. 268 (2009) 201-208.

DOI: 10.1016/j.jcat.2009.09.016

Google Scholar

[4] P Liu,. J. Rodriguez, A. T. Asakura, J. Gomes, K. Nakamura, Desulfurization reactions on Ni2P(001) and alpha-Mo2C(001) surfaces: Complex role of P and C sites, J. Phys. Chem. B 109 (2005) 4575-4583.

DOI: 10.1021/jp044301x

Google Scholar

[5] Y. Li, W. Y. Guo, H. Y. Zhu, L. M. Zhao, M. Li, S. R. Li, D. L. Fu, X. Lu, H. H. Shan, Initial Hydrogenations of Pyridine on MoP(001): A Density Functional Study, Langmuir 28 (2012) 3129-3137.

DOI: 10.1021/la2051004

Google Scholar

[6] Z. G. Deng, Y. Q. Lei, X. Q. Lu, W. L. Wang, H. Y. Zhu, S. -P. Ng, W. Y. Guo, C. -M. L. Wu, Hydrodenitrogenation of pyridine on MoP(010): Competition between hydrogenation and denitrification, Inorg. Chim. Acta 435 (2015) 30-37.

DOI: 10.1016/j.ica.2015.06.008

Google Scholar

[7] Z. L. Wu, F. X. Sun, W. C. Wu, Z. C. Feng, C. H. Liang, Z. B. Wei, C. Li, On the surface sites of MoP/SiO2 catalyst under sulfiding conditions: IR spectroscopy and catalytic reactivity studies, J. Catal. 222 (2004) 41-52.

DOI: 10.1016/j.jcat.2003.10.019

Google Scholar

[8] J. Ren, C. -F. Hio, X. -D. Wen, Z. Cao, J. G. Wang, Y. -W. Li, H. J. Jiao, Thiophene Adsorption and Activation on MoP(001), γ-Mo2N(100), and Ni2P(001): Density Functional Theory Studies, J. Phys. Chem. B 110 (2006) 22563-22569.

DOI: 10.1021/jp0640474

Google Scholar

[9] P. Liu, J. A. R., and J. T. Muckerman. Desulfurization of SO2 and Thiophene on Surfaces and Nanoparticles of Molybdenum Carbide: Unexpected Ligand and Steric Effects, J. Phys. Chem. B 108 (2004) 15662-15670.

DOI: 10.1021/jp040267a

Google Scholar

[10] H. Luo, J. Cai, X. Tao, M. Tan, First-principles study of H2S adsorption and dissociation on Mo(110), Comput. Mater. Sci. 101 (2015) 47-55.

DOI: 10.1016/j.commatsci.2015.01.003

Google Scholar

[11] Z. Jiang, P. Qin, T. Fang, Investigation on adsorption and decomposition of H2S on Pd(100) surface: A DFT study, Surf. Sci. 632 (2015) 195-200.

DOI: 10.1016/j.susc.2014.07.020

Google Scholar

[12] Z. Jiang, M. Li, P. Qin, T. Fang, Insight into the adsorption and decomposition mechanism of H2S on clean and S-covered Au(100) surface: A theoretical study, Appl. Surf. Sci. 311 (2014) 40-46.

DOI: 10.1016/j.apsusc.2014.04.197

Google Scholar

[13] D. R. Alfonso, First-principles studies of H2S adsorption and dissociation on metal surfaces, Surf. Sci. 602 (2008) 2758-2768.

DOI: 10.1016/j.susc.2008.07.001

Google Scholar

[14] D. R. Alfonso, A. V. Cugini, D. C. Sorescu, Adsorption and decomposition of H2S on Pd(111) surface: a first-principles study, Catal. Today 99 (2005) 315-322.

DOI: 10.1016/j.cattod.2004.10.006

Google Scholar

[15] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. chem. Phys. 92 (1990) 508-517.

DOI: 10.1063/1.458452

Google Scholar

[16] B. Delley, Hardness conserving semilocal pseudopotentials, Phys. Rev. B 13 (1976) 5188-5192.

Google Scholar

[17] J. P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B 33 (1986) 8800-8802.

DOI: 10.1103/physrevb.33.8800

Google Scholar

[18] J. P. Perdew, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992) 6671-6687.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[19] J. Song, X. Niu, L. Ling, B. Wang, A density functional theory study on the interaction mechanism between H2S and the α-Fe2O3(0001) surface, Fuel Process. Technol. 115 (2013) 26-33.

DOI: 10.1016/j.fuproc.2013.04.003

Google Scholar

[20] T. L. Halgren , W. N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chem. Phys. Lett. 49 (1977) 225-232.

DOI: 10.1016/0009-2614(77)80574-5

Google Scholar

[21] H. Y. Zhu, W. Y. Guo, R. B. Jiang, L. M. Zhao, X. Q. Lu, M. Li, D. L. Fu, H. H. Shan, Decomposition of methanthiol on Pt(111): a density functional investigation, Langmuir, 26 (2010) 12017-25.

DOI: 10.1021/la101678d

Google Scholar