The Study of Preparation Technology of the Material Saving Plastic Building Moulding Board

Article Preview

Abstract:

The effects of glass fiber content and the molding parameters on the mechanical properties of the material saving plastic building molding board were studied in this paper. The flexural strength and flexural modulus increase with the increment of glass fiber content; but as the molding temperature, molding pressure, molding time, or cooling pressing time increases, the flexural strength and flexural modulus initially increase and subsequently decrease or remain constant. The optimum content of glass fiber is 40%, and the production process is as follows: the hot pressing temperature is 200 oC, the hot pressing pressure is 4 MPa, the hot pressing time is 5 min and the cooling pressing time is 5 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-328

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Carlo I., Agata L. G., Jacopo B., Caterina T., Giovanni D., Marco F., Valentina S., Charles M. Energy and environmental assessment of industrial hemp for building applications: A review. Renew. Sust. Energ. Rev. 51 (2015) 2942.

Google Scholar

[2] M.A. Dweib, C.F. Vahlund, C.M. OBradaigh. Fiber structure and anisotropy of glass reinforced thermoplastics. Composites: Part A. 31 (2000) 235244.

DOI: 10.1016/s1359-835x(99)00078-0

Google Scholar

[3] A. Trende, B.T. Astrom, G. Nilsson. Modelling of residual stresses in compression moulded glass-mat reinforced thermoplastics. Composites: Part A . 31 (2000) 12411254.

DOI: 10.1016/s1359-835x(00)00078-6

Google Scholar

[4] S.H. Jo, E.G. Kim. Effect of product geometry on fiber orientation of compression-molded rib type products. J. Mater. Process. Technol. 130131 (2000) 156160.

Google Scholar

[5] H. Ning, S. Pillay, U. K. Vaidya. Design and development of thermoplastic composite roof door for mass transit bus. Mater. Des. 30 (2009) 983991.

DOI: 10.1016/j.matdes.2008.06.066

Google Scholar

[6] A. Gay, F. Lefebvre, S. Bergamo, F. Valiorgue, P. Chalandon, P. Michel. P. Bertrand. Fatigue performance of a self-piercing rivet joint between aluminum and glass fiber reinforced thermoplastic composite. Int. J. Fatigue. 83 (2016) 127-134.

DOI: 10.1016/j.ijfatigue.2015.10.004

Google Scholar

[7] H. Rolland, N. Saintier, N. Lenoir, A. King, G. Robert. Fatigue mechanisms description in short glass fiber reinforced thermoplastic by microtomographic observations. Procedia Structural Integrity. 2 (2016) 301-308.

DOI: 10.1016/j.prostr.2016.06.039

Google Scholar

[8] N. A. Shuaib, P. T. Mativenga. Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites. J. CLEAN. PROD. 120 (2016) 198-206.

DOI: 10.1016/j.jclepro.2016.01.070

Google Scholar

[9] Z. Huang, S. Sugiyama, J. Yanagimoto. Applicability of adhesiveembossing hybrid joining process to glass-fiber-reinforced plastic and metallic thin sheets. J. Mater. Process. Technol. 214 (2014) 2018-(2028).

DOI: 10.1016/j.jmatprotec.2013.11.020

Google Scholar

[10] Z. Huang, S. Sugiyama, J. Yanagimoto. Adhesiveembossing hybrid joining process to fiber reinforced thermosetting plastic and metallic thin sheets. Procedia Engineering. 81 (2014) 2123-2128.

DOI: 10.1016/j.proeng.2014.10.296

Google Scholar

[11] Sofie Baeten, Ignaas Verpoest. Optimisation of a GMT-based cold pressing technique for low cost textile reinforced thermoplastic composites. Composites: Part A. 30 (1999) 667682.

DOI: 10.1016/s1359-835x(98)00173-0

Google Scholar

[12] M.D. Wakeman, T.A. Cain, C.D. Rudd, R. Brooks, A.C. Long. Compression moulding of glass and polypropylene composites for optimised macro- and micro-mechanical properties II. Glass mat reinforced thermoplastics. Compos. Sci. Technol. 59 (1999).

DOI: 10.1016/s0266-3538(98)00124-9

Google Scholar

[13] S.F. Bush, F.G. Torres, J.M. Methven. Rheological characterisation of discrete long glass fiber (LGF) reinforced thermoplastics. Composites: Part A. 31 (2000) 14211431.

DOI: 10.1016/s1359-835x(00)00089-0

Google Scholar