Magnetic Properties and Magnetocaloric Effect of Nd0.7Gd0.3Mn2Si2 Alloy

Article Preview

Abstract:

In this work, crystal structure, magnetic properties and magnetocaloric effect of Nd0.7Gd0.3Mn2Si2 alloy were studied by X-ray diffraction (XRD), Physical Property Measurement System (PPMS) and Differential Scanning Calorimetry (DSC). Nd0.7Gd0.3Mn2Si2 crystallizes in ThCr2Si2-typed structure with space group I4/mmm, in which the Nd, Gd, Mn and Si atoms occupy 2a (0, 0, 0), 2a (0, 0, 0), 4d (0, 1/2, 1/4) and 4e (0, 0, 0.38261) position, respectively. The Curie temperature (Tc) of Nd0.7Gd0.3Mn2Si2 alloy is 42 K, while the spin reorientation temperature (TSR) is 26 K and the Nel temperature (TN) is 410 K. The Tc and TN were determined using PPMS and DSC, respectively. The maximum value of the magnetic entropy change (-Smax) in the field change of 0-5 T is 11.862 J/kg K, while the value of relative cooling power (RCP) in Nd0.7Gd0.3Mn2Si2 alloy is 69.666 J/kg under the field change of 5 T.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-52

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.V. Morozkin, A.V. Knotko, J. Solid State Chem. 232 (2015) 150-156.

Google Scholar

[2] D. Mumbaraddi, S. Sarkar, J. Solid State Chem. 22 (2015) 94-115.

Google Scholar

[3] S. Gupta, K.G. Suresh, J. Alloys Comp. 618 (2015) 562-606.

Google Scholar

[4] Anton O. Oliynyk, Kadar Djama-Kayad, Arthur Mar, J. Alloys Comp. 622 (2015) 837-841.

Google Scholar

[5] J.L. Wang, S.J. Campbell, A.J. Studer, M. Avdeev, R. Zeng, S.X. dou, J. Phys. Condens. Mater. 21 (2009) 124217.

Google Scholar

[6] P. Kumar, K.G. Suresh, A.K. Nigam, A. Magnus, A.A. Coelho, S. Gama, Phys. Rev. B 77 (2008) 22442.

Google Scholar

[7] J.D. Zou, B.G. Shen, B. Gao, J. Shen, J.R. Sun, Adv. Mater. 21 (2009) 3727-3729.

Google Scholar

[8] M.D. Kuzmin, M. Richter, Phy. Rev. B 76 (2007) 092401.

Google Scholar

[9] Z. Ban, M. Sikirica, Acta Crystallogr. 18 (1965) 594-599.

Google Scholar

[10] S. Kervan, Y. Elerman, M. Acet, J. Alloy Compd. 335 (2002) 70-76.

Google Scholar

[11] A. Kilic, S. Kervan, A. Gencer, J. Magn. Magn. Mater. 288 (2005) 244-249.

Google Scholar

[12] S. Kervan, Y. Elerman, M. Acet, J. Alloy Compd. 321 (2001) 35-39.

Google Scholar

[13] G. Venturini, R. Welter, E. Ressouche, B. Malaman, J. Alloy Compd. 224 (1995) 262-268.

Google Scholar

[14] G. Venturini, J. Alloy Compd. 232 (1996) 133-141.

Google Scholar

[15] M.N. Norlidah, G. Venturini, B. Malaman, J. Alloy Compd. 245 (1996) 133-141.

Google Scholar

[16] M.N. Norlidah, G. Venturini, B. Malaman, J. Alloy Compd. 248 (1997) 112-120.

Google Scholar

[17] G. Venturini, R. Welter, E. Ressouche, B. Malaman, J. Alloy Compd. 223 (1995) 101-110.

Google Scholar

[18] G. Venturini, R. Welter, E. Ressouche, B. Malaman, J. Magn. Magn. Mater. 150 (1995) 197-212.

Google Scholar

[19] P. Kumar, N.K. Singh, K.G. Suresh, A.K. Nigam, S.K. Malik, J. Appl. Phys. 101 (2007) 013908.

Google Scholar

[20] S. Siek, A. Szytula, J. Leciejewicz, Phys. Status Solidi (a) 46 (1978) K101.

Google Scholar

[21] A. Szytula, I. Szott, Solid State Commun. 40 (1981) 199-202.

Google Scholar

[22] A. Szytula, S. Siek, J. Magn. Magn. Mater. 27 (1982) 281-292.

Google Scholar

[23] S. Kervan, N. Kervan, A. ztrk, Jalloy Compd. 335 (2002) 70-76.

Google Scholar

[24] K.A. Gshneidner, V.K. Pecharsky, Annu. Rev. Mater. Sci. 30 (2000) 387-429.

Google Scholar