Microstructure and Magnetic Properties of (Nd0.7Pr0.15RE0.15)2.28Fe13.58B1.14 (RE=La, Ce, Y) Alloys

Article Preview

Abstract:

In this work, the microstructure, crystal structure and magnetic properties of (Nd0.7Pr0.15RE0.15)2.28Fe13.58B1.14 (RE=La, Ce, Y) alloys prepared by arc-melting were investigated experimentally. The experimental results show that all alloys annealed at 1173 K for 360 hrs contain the isotropic Nd2Fe14B structure phase. The coercivities (Hc) of (Nd0.7Pr0.15RE0.15)2.28Fe13.58B1.14 (RE=La, Ce, Y) melt-spun ribbons are 12.3 kOe, 13.2 kOe, 8.5 kOe, and the Curie temperatures (Tc) of annealed (Nd0.7Pr0.15RE0.15)2.28Fe13.58B1.14 (RE=La, Ce, Y) alloys are 569 K, 552 K and 576 K, respectively. Meanwhile, the remanences (Br) of (Nd0.7Pr0.15RE0.15)2.28Fe13.58B1.14 (RE=La, Ce, Y) melt-spun ribbons are about 67 emu/g, 74 emu/g and 72 emu/g, respectively. It was indicated that the coercivity, remanence and Curie temperatures of (Nd0.7Pr0.15RE0.15)2.28Fe13.58B1.14 alloys are dependent on light rare earth elements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-61

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Y. Xing, J.Z. Han, Z. Lin, F.M. Wan, S.Q. Liu, C.S. Wang, J.B. Yang, Y.C. Yang, J. Magn. Magn. Mater. 331 (2013) 140-143.

Google Scholar

[2] W.C. Chang, S.H. Wu, B.M. Ma, C.O. Bounds, J. Magn. Magn. Mater. 167 (1997) 65-70.

Google Scholar

[3] W. Gong, G.C. Hadjipanayis, J. Appl. Phys. 63 (1988) 3310-3315.

Google Scholar

[4] J, Yamasaki, H. Soeda, M. H. Yanagida, K. Mohri, N. Teshima, O. Kohmoto, Yoneyama, N. T Yamaguchi, IEEE Trans. Magn. 22 (1986) 763-765.

DOI: 10.1109/tmag.1986.1064332

Google Scholar

[5] K.Y. Ko, S. Yoon, J.G. Booth, H.J. Al-Kanani, S.K. Cho, J. Mater. Sci. 37 (2002) 1421-1427.

Google Scholar

[6] K.Y. Ko, S. Yoon, J.G. Booth, J. Magn. Magn. Mater. 176 (1997) 313-320.

Google Scholar

[7] I. Bulyk, V.V. Panasyuk, A.M. Trostianchyn, G.M. Grygorenko, Y.M. Pomarin, T.G. Taranova, V.A. Kostin, Y.G. Putilov, J. Alloy. Compd. 370 (2004) 261-263.

DOI: 10.1016/j.jallcom.2003.08.092

Google Scholar

[8] E. Niu, Z.A. Chen, G.A. Chen, Y.G. Zhao, J. Zhang, X.L. Rao, B.P. Hu, Z X Wang, J. Appl. Phys. 115 (2014) 113912.

Google Scholar

[9] X.B. Liu, Z. Altounian, M. Huang, Q. Zhang, J.P. Liu, J. Alloy. Compd. 549 (2013) 366-369.

Google Scholar

[10] M. Hussain, J.L. Liu, Z. Zhao, J. Magn. Magn. Mater. 399 (2016) 26-31.

Google Scholar

[11] W.C. Chang, S.H. Wu, C.C. Bounds, J. Magn. Magn. Mater. 167 (1997) 65-70.

Google Scholar

[12] A.K. Pathak, M. Khan, K.A. Gschneidner, R.W. McCallum, L. Zhou, K. Sun, K.W. Dennis, C. Zhou, F.E. Pinkerton, M.J. Kramer, V.K. Pecharsky, Adv. Mater. 27 (2015) 2663-2667.

DOI: 10.1002/adma.201404892

Google Scholar

[13] Z. Liu, D. Qian, D. Zeng, IEEE Trans. Magn. 11 (2012) 2797-2799.

Google Scholar

[14] D.Y. Qian, M. Hussain, Z.G. Zheng, X.C. Zhong, X.X. Gao, Z.W. Liu, J. Magn. Magn. Mater. 384 (2015) 87-92.

Google Scholar

[15] F. Yang, X. Wang, W. Liu, W.B. Cui, X.G. Zhao, Z.D. Zhang, J. Magn. Magn. Mater. 321 (2009) 1068-1071.

Google Scholar

[16] Y.Z. He, H.P. Wu, Z.Q. Zou, Chin. Phys. B 23 (2014) 047501.

Google Scholar

[17] D. Zhou, J.B. Yang, M.G. Zhu, J.Z. Han, J. Magn. Magn. Mater. 393 (2015) 179-182.

Google Scholar

[18] R. Grossinger, X.K. Sun, R. Eibler, J. Magn. Magn. Mater. 58 (1986) 55-60.

Google Scholar

[19] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura. IEEE Trans. Magn. 20 (1984) 584-1589.

Google Scholar