Synthesis and Photochromic Properties of 1-[2-Cyano-1,5-Dimethyl-4-Pyrryl]-2-[2-Methyl-5-(1,3-Dioxolane)-3-Thienyl] Perfluorocyclopentene

Article Preview

Abstract:

A new unsymmetrical photochromic diarylethene 1-[2-cyano-1, 5-dimethyl-4-pyrryl] -2-[2-methyl-5-(1, 3-dioxolane)-3-thienyl] perfluorocyclopentene has been synthesized, and its properties including photochromism, kinetics and fluorescence have been investigated in detail. The results showed that its photochromic behaviors could be modulated by UV/Vis light, changing from colorless to blue in acetonitrile solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-74

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of diarylethene molecules and crystals: memories, switches, and actuators, Chem. Rev. 114 (2014) 12174-12277.

DOI: 10.1021/cr500249p

Google Scholar

[2] G. Mistlberger, X. Xie, M. Pawlak, G.A. Crespo, E. Bakker, Photoresponsive ion extraction release systems: dynamic ion optodes for calcium and sodium based on photochromic spiropyran, Anal. Chem. 85 (2013) 2983-2990.

DOI: 10.1021/ac4000283

Google Scholar

[3] J.J. Zhang, Q. Zou, H. Tian, Photochromic materials: more than meets the eye, Adv. Mater. 25 (2013) 378-399.

DOI: 10.1002/adma.201201521

Google Scholar

[4] M. Qin, Y. Huang, F. Li, Y.J. Song, Photochromic sensors: a versatile approach for recognition and discrimination, Mater. Chem. 3 (2015) 9265-9275.

DOI: 10.1039/c5tc01939g

Google Scholar

[5] V.I. Minkin, Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds, Chem. Rev. 104 (2004) 2751-2776.

DOI: 10.1021/cr020088u

Google Scholar

[6] M. Irie, Diarylethenes for memories and switches, Chem. Rev. 100 (2000) 1685-1716.

DOI: 10.1021/cr980069d

Google Scholar

[7] Y. N. Li, Q. Li, Photochemically reversible and thermally stable axially chiral diarylethene switches, Org. Lett. 14 (2012) 4362-4365.

DOI: 10.1021/ol3018165

Google Scholar

[8] H. Kamiya, S. Yanagisawa, S. Hiroto, K. Itami, H. Shinokubo, Functionalization of a simple dithienylethene via palladium-catalyzed regioselective direct arylation, Org. Lett. 13 (2011) 6394-6397.

DOI: 10.1021/ol2026069

Google Scholar

[9] S.J. Chen, L.J. Chen, H.B. Yang, H. Tian, W.H. Zhu, Light-triggered reversible supramolecular transformations of multi-bisthienylethene hexagons, J. Am. Chem. Soc. 134 (2012) 13596-13599.

DOI: 10.1021/ja306748k

Google Scholar

[10] T. Tsujioka, Y. Sesumi, R. Takagi, K. Masui, S. Yokojima, K. Uchida, S. Nakamura, Selective metal deposition on photoswitchable molecular surfaces, J. Am. Chem. Soc. 130(2008) 10740-10747.

DOI: 10.1021/ja802430q

Google Scholar

[11] V. Amendola, L. Fabbrizzi, F. Forti, M. Licchelli, C. Mangano, P. Pallavicini, A. Poggi, D. Sacchi, A. Taglieti, Light-emitting molecular devices based on transition metals, Coord. Chem. Rev. 250 (2006) 273-299.

DOI: 10.1016/j.ccr.2005.04.022

Google Scholar

[12] D.A. Leigh, M.A.F. Morales, E.M. Perez, J.K.Y. Wong, C.G. Saiz, A.M.Z. Slawin, et al. Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films, Angew. Chem. Int. Ed. 44 (2005).

DOI: 10.1002/anie.200590066

Google Scholar

[13] C. Caltagirone, P.A. Gale, Anion receptor chemistry: highlights from 2007, Chem. Soc. Rev. 38 (2009) 520-563.

DOI: 10.1039/b806422a

Google Scholar