Effect of Inconel 625 on Microstructure and Mechanical Properties of Gas Tungsten Arc Welded Inconel-713LC Superalloy Joints

Article Preview

Abstract:

This study investigates how the use of Inconel filler metal 625 affects the microstructure and mechanical properties of gas tungsten arc welded joints of an IN-713LC nickel-based superalloy. Due to their difference in composition, obvious weld beads could be found by X-ray detection. In addition, it was found that the γ' strengthening phase was absent and carbide was present between the matrix and the weld bead during gas tungsten arc welding. These carbides are strongly related to the formation of cracking and weld shrinkage during solidification. The absence of the γ' strengthening phase and the presence of weld shrinkage and cracking led to a decrease in the hardness, tensile strength, and elongation of the welded pieces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-16

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Donachie, S.J. Donachie, Superalloys: A Technical Guide, ASM International, Materials Park, Ohio, (2002).

Google Scholar

[2] A. Chamanfar, M. Jahazi, A. Bonakdar, E. Morin, A. Firoozrai, G. L'Espérance, Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades, Mater. Sci. Eng. A 642 (2015) 230-240.

DOI: 10.1016/j.msea.2015.06.087

Google Scholar

[3] M. Lachowicz, W. Dudziński, K. Haimann, M. Podrez-Radziszewska, Microstructure transformations and cracking in the matrix of γ-γ' superalloy Inconel 713C melted with electron beam, Mater. Sci. Eng. A 479 (2008) 269-276.

DOI: 10.1016/j.msea.2007.06.064

Google Scholar

[4] S. Zlá, B. Smetana, M. Žaludová, J. Dobrovská, V. Vodárek, K. Konečná, V. Matějka, H. Francová, Determination of thermophysical properties of high temperature alloy IN713LC by thermal analysis, J. Therm. Anal. Calorim. 110 (2012) 211-219.

DOI: 10.1007/s10973-012-2304-8

Google Scholar

[5] R. C. Reed, The Superalloys Fundamentals and Applications, Cambridge Univ. Press, Cambridge, (2006).

Google Scholar

[6] L. Kunz, P. Lukáš, R Konecˇná, S. Fintová, Casting defects and high temperature fatigue life of IN 713LC superalloy, Int. J. Fatigue 41 (2012) 47–51.

DOI: 10.1016/j.ijfatigue.2011.12.002

Google Scholar

[7] M. A. Gonzáleza, D. I. Martíneza, A. Péreza, H. Guajardob, A. Garza, Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy. Mater. Charact. 62 (2011) 1116-1123.

DOI: 10.1016/j.matchar.2011.09.006

Google Scholar

[8] E. A. Bonifaz, N. L. Richards, Modeling cast IN-738 superalloy gas tungsten arc welds. Acta Mater. 57 (2009) 1785-1794.

DOI: 10.1016/j.actamat.2008.12.022

Google Scholar

[9] Y. P. Kathuria, Some aspects of laser surface cladding in the turbine industry. Surf. Coat. Technol. 132 (2000) 262-269.

DOI: 10.1016/s0257-8972(00)00735-0

Google Scholar

[10] O. A. Ojo, N. L. Richards, M. C. Chaturvedi, Liquation of various phases in HAZ during welding of cast Inconel* 738LC. Mater. Sci. Technol. 20 (2004) 1027-1034.

DOI: 10.1179/026708304225019948

Google Scholar

[11] O. Hunziker, D. Dye, R. C. Reed, On the formation of a centreline grain boundary during fusion welding. Acta Mater. 48 (2000) 4191-4201.

DOI: 10.1016/s1359-6454(00)00273-1

Google Scholar

[12] A. Yongsoo, Y. Byunghyun, K. Hyungjun, L. Changhee, Effect of dilution on the behavior of solidification cracking in PTAW overlay deposit on Ni-Base superalloys. Met. Mater. Int. 8 (2002) 469-477.

DOI: 10.1007/bf03027245

Google Scholar

[13] O. A. Ojo, Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition. Mater. Sci. Technol. 23 (2007) 1149-1155.

DOI: 10.1179/174328407x213323

Google Scholar