Thermal Buckling of Functionally Graded Sandwich Beams

Article Preview

Abstract:

Thermal buckling of new model of functionally graded (FG) sandwich beams is presented in this study. Material properties and thermal expansion coefficient of FG sheets are assumed to vary continuously along the thickness according to either power-law (P-FGM) or sigmoid function (S-FGM) in terms of the volume fractions of the constituents. Equations of stability are derived based on the generalized higher-order shear deformation beam theory. Thermal loads are supposed to be constant, linear or nonlinear distribution along the thickness direction. An accurate form solution for nonlinear temperature variation through the thickness of S-FGM and P-FGM sandwich beams is presented. Numerical examples are presented to examine the influence of thickness ratio, the inhomogeneity parameter and the thermal loading kinds on the thermal buckling response of various types of FG sandwich beams.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-59

Citation:

Online since:

December 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic, Boston, (1999).

DOI: 10.1007/978-1-4615-5301-4_7

Google Scholar

[2] M. Finot, S. Suresh, C. Bull, S. Sampath, Curvature changes during thermal cycling of a compositionally graded Ni/A12O3 multi-layered material, Mat. Sci. Eng. A–Struct. 205 (1996) 59-71.

DOI: 10.1016/0921-5093(95)09892-5

Google Scholar

[3] S.R. Li, J.H. Zhang, Y.G. Zhao, Thermal Post-buckling of Functionally Graded Material Timoshenko Beams, Appl. Math. Mech. 27 (2006) 803–810.

DOI: 10.1007/s10483-006-0611-y

Google Scholar

[4] R. Shahsiah, K.M. Nikbin, M.R. Eslami, Thermal Buckling of Functionally Graded Beams, Iranian Journal of Mechanical Engineering10 (2009) 65–81.

Google Scholar

[5] Y. Kiani, M.R. Eslami, Thermal Buckling Analysis of Functionally Graded Material Beams, Int. J. Mech. Mater. Des. 6 (2010) 229–238.

DOI: 10.1007/s10999-010-9132-4

Google Scholar

[6] Y. Kiani, M.R. Eslami, Thermomechanical Buckling of Temperature-dependent FGM Beams, Latin. Am. J. Solids. Struct. 10 (2013) 223–245.

DOI: 10.1590/s1679-78252013000200001

Google Scholar

[7] Y. Kiani, S. Taheri, M.R. Eslami, Thermal Buckling of Piezoelectric Functionally Graded Material Beams, J. Therm. Stresses. 34 (2011) 835–850.

DOI: 10.1080/01495739.2011.586272

Google Scholar

[8] Y. Kiani, M. Rezaei, S. Taheri, M.R. Eslami, Thermal-electrical Buckling of Piezoelectric Functionally Graded Material Timoshenko Beams, Int. J. Mech. Mater. Des. 7 (2011) 185–197.

DOI: 10.1007/s10999-011-9158-2

Google Scholar

[9] Y. Fu, J. Wang, Y. Mao, Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment, Appl. Math. Model. 36 (2012) 4324–4340.

DOI: 10.1016/j.apm.2011.11.059

Google Scholar

[10] N. Wattanasakulpong, B.G. Prusty, D.W. Kelly, Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams, Int. J. Mech. Sci. 53 (2011) 734–743.

DOI: 10.1016/j.ijmecsci.2011.06.005

Google Scholar

[11] S.E. Esfahani, Y. Kiani, M.R. Eslami, Non-linear Thermal stability analysis of temperature dependent fgm beams supported on non-linear hardening elastic foundations, Int. J. Mech. Sci. 69 (2013) 10–20.

DOI: 10.1016/j.ijmecsci.2013.01.007

Google Scholar

[12] A. Kargani, Y. Kiani, M.R. Eslami, Exact Solution for Nonlinear Stability of Piezoelectric FGM Timoshenko Beams Under Thermo-electrical Loads, J. Therm. Stresses. 36 (2013) 1056–1076.

DOI: 10.1080/01495739.2013.818888

Google Scholar

[13] M. Komijani, Y. Kiani, M.R. Eslami, Non-linear Thermoelectrical Stability Analysis of Functionally Graded Piezoelectric Material Beams, J. Intell. Mater. Syst. Struct. 24 (2013) 399–410.

DOI: 10.1177/1045389x12461079

Google Scholar

[14] S.E. Ghiasian, Y. Kiani, M.R. Eslami, Dynamic Buckling of Suddenly Heated or Compressed FGM Beams Resting on Nonlinear Elastic Foundation, Compos. Struct. 106 (2013) 225–234.

DOI: 10.1016/j.compstruct.2013.06.001

Google Scholar

[15] S.E. Ghiasian, Y. Kiani, M.R. Eslami, Nonlinear Thermal Dynamic Buckling of FGM Beams, Eur. J. Mech. A–Solids. 54 (2015) 232–242.

DOI: 10.1016/j.euromechsol.2015.07.004

Google Scholar

[16] M. Rafiee, J. Yang, S. Kitipornchai, Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams, Compt. Math. App. 66 (2013) 1147–1160.

DOI: 10.1016/j.camwa.2013.04.031

Google Scholar

[17] A. Tounsi, A. Semmah, A.A. Bousahla, Thermal buckling behavior of nanobeam using an efficient higher-order nonlocal beam theory, Journal of Nanomechanics and Micromechanics 3 (2013) 37–42.

DOI: 10.1061/(asce)nm.2153-5477.0000057

Google Scholar

[18] A.R. Vosoughi, Thermal Postbuckling Analysis of Functionally Graded Beams, J. Therm. Stresses. 37 (2014) 532–544.

DOI: 10.1080/01495739.2013.872462

Google Scholar

[19] D.G. Zhang, Thermal Post-buckling and Nonlinear Vibration Analysis of FGM Beams Based on Physical Neutral Surface and High Order Shear Deformation Theory, Meccanica 49 (2014) 283–293.

DOI: 10.1007/s11012-013-9793-9

Google Scholar

[20] H.S. Shen, Z.X. Wang, Nonlinear Analysis of Shear Deformable FGM Beams Resting on Elastic Foundations in Thermal Environments. Int. J. Mech. Sci. 81 (2014) 195–206.

DOI: 10.1016/j.ijmecsci.2014.02.020

Google Scholar

[21] F. Ebrahimi, E. Salari, Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments, Compos. Struct. 128 (2015) 363–380.

DOI: 10.1016/j.compstruct.2015.03.023

Google Scholar

[22] H. Wu, S. Kitipornchai, J. Yang, Thermal buckling and postbuckling analysis of functionally graded carbon nanotube-reinforced composite beams, Applied Mechanics and Meterials 846 (2016) 182–187.

DOI: 10.4028/www.scientific.net/amm.846.182

Google Scholar

[23] Y. Sun, S.R. Li, R.C. Batra, Thermal Buckling and Post-buckling of FGM Timoshenko Beams on Nonlinear Elastic Foundation, J. Therm. Stresses. 39 (2016) 11–26.

DOI: 10.1080/01495739.2015.1120627

Google Scholar

[24] G.L. She, X. Shu, Y.R. Ren, Thermal buckling and postbuckling analysis of piezoelectric FGM beams based on high-order shear deformation theory, J. Therm. Stresses. 40 (2016) 783–797.

DOI: 10.1080/01495739.2016.1261009

Google Scholar

[25] A. Paul, D. Das, Non-linear Thermal Post-buckling Analysis of FGM Timoshenko Beam Under Non-uniform Temperature Rise Across Thickness, Eng. Sci. Technol. Int. J. 19 (2016) 1608–1625.

DOI: 10.1016/j.jestch.2016.05.014

Google Scholar

[26] F. Ebrahimi, M.R. Barati, Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams‏‏, J. Mech. 33 (2016) 23–33.

DOI: 10.1017/jmech.2016.46

Google Scholar

[27] G.L. She, F.G. Yuan, Y.R. Ren, Thermal buckling and postbuckling analysis of functionally graded beams based on a general higher-order shear deformation theory, Applied Mathematical Modelling 47 (2017) 340–357.

DOI: 10.1016/j.apm.2017.03.014

Google Scholar

[28] J.N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech. 51 (1984) 745–752.

DOI: 10.1115/1.3167719

Google Scholar