[1]
Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic, Boston, (1999).
DOI: 10.1007/978-1-4615-5301-4_7
Google Scholar
[2]
M. Finot, S. Suresh, C. Bull, S. Sampath, Curvature changes during thermal cycling of a compositionally graded Ni/A12O3 multi-layered material, Mat. Sci. Eng. A–Struct. 205 (1996) 59-71.
DOI: 10.1016/0921-5093(95)09892-5
Google Scholar
[3]
S.R. Li, J.H. Zhang, Y.G. Zhao, Thermal Post-buckling of Functionally Graded Material Timoshenko Beams, Appl. Math. Mech. 27 (2006) 803–810.
DOI: 10.1007/s10483-006-0611-y
Google Scholar
[4]
R. Shahsiah, K.M. Nikbin, M.R. Eslami, Thermal Buckling of Functionally Graded Beams, Iranian Journal of Mechanical Engineering10 (2009) 65–81.
Google Scholar
[5]
Y. Kiani, M.R. Eslami, Thermal Buckling Analysis of Functionally Graded Material Beams, Int. J. Mech. Mater. Des. 6 (2010) 229–238.
DOI: 10.1007/s10999-010-9132-4
Google Scholar
[6]
Y. Kiani, M.R. Eslami, Thermomechanical Buckling of Temperature-dependent FGM Beams, Latin. Am. J. Solids. Struct. 10 (2013) 223–245.
DOI: 10.1590/s1679-78252013000200001
Google Scholar
[7]
Y. Kiani, S. Taheri, M.R. Eslami, Thermal Buckling of Piezoelectric Functionally Graded Material Beams, J. Therm. Stresses. 34 (2011) 835–850.
DOI: 10.1080/01495739.2011.586272
Google Scholar
[8]
Y. Kiani, M. Rezaei, S. Taheri, M.R. Eslami, Thermal-electrical Buckling of Piezoelectric Functionally Graded Material Timoshenko Beams, Int. J. Mech. Mater. Des. 7 (2011) 185–197.
DOI: 10.1007/s10999-011-9158-2
Google Scholar
[9]
Y. Fu, J. Wang, Y. Mao, Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment, Appl. Math. Model. 36 (2012) 4324–4340.
DOI: 10.1016/j.apm.2011.11.059
Google Scholar
[10]
N. Wattanasakulpong, B.G. Prusty, D.W. Kelly, Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams, Int. J. Mech. Sci. 53 (2011) 734–743.
DOI: 10.1016/j.ijmecsci.2011.06.005
Google Scholar
[11]
S.E. Esfahani, Y. Kiani, M.R. Eslami, Non-linear Thermal stability analysis of temperature dependent fgm beams supported on non-linear hardening elastic foundations, Int. J. Mech. Sci. 69 (2013) 10–20.
DOI: 10.1016/j.ijmecsci.2013.01.007
Google Scholar
[12]
A. Kargani, Y. Kiani, M.R. Eslami, Exact Solution for Nonlinear Stability of Piezoelectric FGM Timoshenko Beams Under Thermo-electrical Loads, J. Therm. Stresses. 36 (2013) 1056–1076.
DOI: 10.1080/01495739.2013.818888
Google Scholar
[13]
M. Komijani, Y. Kiani, M.R. Eslami, Non-linear Thermoelectrical Stability Analysis of Functionally Graded Piezoelectric Material Beams, J. Intell. Mater. Syst. Struct. 24 (2013) 399–410.
DOI: 10.1177/1045389x12461079
Google Scholar
[14]
S.E. Ghiasian, Y. Kiani, M.R. Eslami, Dynamic Buckling of Suddenly Heated or Compressed FGM Beams Resting on Nonlinear Elastic Foundation, Compos. Struct. 106 (2013) 225–234.
DOI: 10.1016/j.compstruct.2013.06.001
Google Scholar
[15]
S.E. Ghiasian, Y. Kiani, M.R. Eslami, Nonlinear Thermal Dynamic Buckling of FGM Beams, Eur. J. Mech. A–Solids. 54 (2015) 232–242.
DOI: 10.1016/j.euromechsol.2015.07.004
Google Scholar
[16]
M. Rafiee, J. Yang, S. Kitipornchai, Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams, Compt. Math. App. 66 (2013) 1147–1160.
DOI: 10.1016/j.camwa.2013.04.031
Google Scholar
[17]
A. Tounsi, A. Semmah, A.A. Bousahla, Thermal buckling behavior of nanobeam using an efficient higher-order nonlocal beam theory, Journal of Nanomechanics and Micromechanics 3 (2013) 37–42.
DOI: 10.1061/(asce)nm.2153-5477.0000057
Google Scholar
[18]
A.R. Vosoughi, Thermal Postbuckling Analysis of Functionally Graded Beams, J. Therm. Stresses. 37 (2014) 532–544.
DOI: 10.1080/01495739.2013.872462
Google Scholar
[19]
D.G. Zhang, Thermal Post-buckling and Nonlinear Vibration Analysis of FGM Beams Based on Physical Neutral Surface and High Order Shear Deformation Theory, Meccanica 49 (2014) 283–293.
DOI: 10.1007/s11012-013-9793-9
Google Scholar
[20]
H.S. Shen, Z.X. Wang, Nonlinear Analysis of Shear Deformable FGM Beams Resting on Elastic Foundations in Thermal Environments. Int. J. Mech. Sci. 81 (2014) 195–206.
DOI: 10.1016/j.ijmecsci.2014.02.020
Google Scholar
[21]
F. Ebrahimi, E. Salari, Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments, Compos. Struct. 128 (2015) 363–380.
DOI: 10.1016/j.compstruct.2015.03.023
Google Scholar
[22]
H. Wu, S. Kitipornchai, J. Yang, Thermal buckling and postbuckling analysis of functionally graded carbon nanotube-reinforced composite beams, Applied Mechanics and Meterials 846 (2016) 182–187.
DOI: 10.4028/www.scientific.net/amm.846.182
Google Scholar
[23]
Y. Sun, S.R. Li, R.C. Batra, Thermal Buckling and Post-buckling of FGM Timoshenko Beams on Nonlinear Elastic Foundation, J. Therm. Stresses. 39 (2016) 11–26.
DOI: 10.1080/01495739.2015.1120627
Google Scholar
[24]
G.L. She, X. Shu, Y.R. Ren, Thermal buckling and postbuckling analysis of piezoelectric FGM beams based on high-order shear deformation theory, J. Therm. Stresses. 40 (2016) 783–797.
DOI: 10.1080/01495739.2016.1261009
Google Scholar
[25]
A. Paul, D. Das, Non-linear Thermal Post-buckling Analysis of FGM Timoshenko Beam Under Non-uniform Temperature Rise Across Thickness, Eng. Sci. Technol. Int. J. 19 (2016) 1608–1625.
DOI: 10.1016/j.jestch.2016.05.014
Google Scholar
[26]
F. Ebrahimi, M.R. Barati, Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams, J. Mech. 33 (2016) 23–33.
DOI: 10.1017/jmech.2016.46
Google Scholar
[27]
G.L. She, F.G. Yuan, Y.R. Ren, Thermal buckling and postbuckling analysis of functionally graded beams based on a general higher-order shear deformation theory, Applied Mathematical Modelling 47 (2017) 340–357.
DOI: 10.1016/j.apm.2017.03.014
Google Scholar
[28]
J.N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech. 51 (1984) 745–752.
DOI: 10.1115/1.3167719
Google Scholar