[1]
X Chen, H. Zhang, Microstructure and mechanical properties of high boron white cast iron with about 4wt% chromium, J. Mater. Sci. 46(2011) 957-963.
DOI: 10.1007/s10853-010-4840-6
Google Scholar
[2]
F.X. Kayster, G.F. Kayster, A re-examination of the Kraft and Flinn diffraction data for Cr2B, (Cr,Fe)2B, and the boride phase in Fe + 18.5 wt% Ni + 20 wt% Cr + B alloys, J. Mater. Sci. 34(1999) 1271-1275.
Google Scholar
[3]
G. Roderíguez-Castro, I. Campos-Silva, E. Chávez-Gutiérrez, J. Martínez-Trinidad, E. Hernández-Sánchez, A. Torres-Hernández, Mechanical properties of FeB and Fe2B layers estimated by Berkovich nanoindentation on tool borided steel, Surf. Coat. Technol. 215(2013) 291-299.
DOI: 10.1016/j.surfcoat.2012.05.145
Google Scholar
[4]
S.N. Geng, J.S. Sun, L.Y. Guo, H.G. Sun and H.Q. Wang, Characterization of weldability, microstructure, and corrosion resistance of dissimilar welded joint between Mo2FeB2-based cermets and 316L stainless steel, J. Mater. Res. 30(2015) 3653-3662.
DOI: 10.1557/jmr.2015.311
Google Scholar
[5]
C. Baron, H. Springer, On the effect of Ni additions to Fe-Cr-B high modulus steels, Mater. Design 167(2019) 107624.
DOI: 10.1016/j.matdes.2019.107624
Google Scholar
[6]
K. Ishikawa, H. Nakamura, R. Homma, M. Fujioka and M. Hoshino, Effect of Molybdenum content on the combined effect of boron and molybdenum on hardenability of low-carbon boron-added steels, ISIJ Int., 58(2018) 551-560.
DOI: 10.2355/isijinternational.isijint-2017-579
Google Scholar
[7]
J. Li, G.L. Xie, K. Zhang and J.T. Han, Shield Performance of High Boron Alloyed Stainless Steel Composite Plate, Adv. Mater. Res. 535-537(2012) 651-654.
DOI: 10.4028/www.scientific.net/amr.535-537.651
Google Scholar
[8]
M. Bastϋrk, J. Arztmann, W. Jerlich, N. Kardjilov, E. Lehmann and M. Zawisky, Analysis of neutron attenuation in boron-alloyed stainless steel with neutron radiography and JEN-3 gauge, J. Nucl. Mater. 341(2005) 189-200.
DOI: 10.1016/j.jnucmat.2005.02.003
Google Scholar
[9]
Ya.E. Gol'dshtein, V.G. Mizin, Some peculiarities of the structure of high boron steels, Met. Sci. Heat Treat. 7-8(1988) 479-484.
DOI: 10.1007/bf00777432
Google Scholar
[10]
Z.L. Liu, Y.X. Li, X. Chen and K.H. Hu, Microstructure and Mechanical Properties of High Boron White Cast Iron, Mater. Sci. Eng. A 486(2008) 112-116.
DOI: 10.1016/j.msea.2007.10.017
Google Scholar
[11]
G. Tran Van, D. Carron, P. Le Masson, V. Robin, A. Andrieu and J. Stodolna, Effect of boron content on hot ductility and hot cracking susceptibility in 316L austenitic stainless steel for welding components, J. Mater. Eng. Perform. 27(2018) 5114-5123.
DOI: 10.1007/s11665-018-3640-z
Google Scholar
[12]
Y.W. Li, H.T. Liu, Z.J. Wang, X.M. Zhang and G.D. Wang, Suppression of edge cracking and improvement of ductility in high borated stainless steel composite plate fabricated by hot-roll-bonding, Mater. Sci. Eng. A 731(2018) 377-384.
DOI: 10.1016/j.msea.2018.06.039
Google Scholar
[13]
D.J. Branagan, B.E. Meacham, J.K. Walleser, A.T. Ball, G.G. Justice, B.L. Nation, S. Cheng and A.V. Sergueeva, International Patent 162074 A1. (2012).
Google Scholar
[14]
H.W. Yen, S.W. Ooi, M. Eizadjou, A. Breen, C.Y. Huang, H.K.D.H. Bhadeshia and S.P. Ringer, Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steel, Acta Mater. 82(2015) 100-114.
DOI: 10.1016/j.actamat.2014.09.017
Google Scholar
[15]
H. Chen, B. Appolaire and S. van der Zwaag, Application of cyclic partial phase transformations for identifying kinetic transitions during solid-state phase transformations: Experiments and modeling, Acta Mater. 59(2011) 6751-6760.
DOI: 10.1016/j.actamat.2011.07.033
Google Scholar
[16]
T. Jia, M. Militzer, The effect of solute Nb on the austenite-to-ferrite transformation, Metall. Mater. Trans. A 46(2015) 614-621.
DOI: 10.1007/s11661-014-2659-5
Google Scholar
[17]
T. Jia, M. Militzer, Modeling Phase Transformation Kinetics in Fe-Mn Alloys, ISIJ Inter. 52(2012) 644-649.
DOI: 10.2355/isijinternational.52.644
Google Scholar
[18]
L.B. Luo, W. Li, S.L. Liu, L. Wang and X.J. Jin, Effect of intermediate temperature annealing on the stability of retained austenite and mechanical properties of medium Mn-TRIP steel, Mater. Sci. Eng. A 742(2019) 69-77.
DOI: 10.1016/j.msea.2018.10.102
Google Scholar
[19]
K. Yan, K-D. Liss, I.B. Timokhina, E.V. Pereloma, In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steel, Mater. Sci. Eng. A 662(2016) 185-197.
DOI: 10.1016/j.msea.2016.03.048
Google Scholar