Production of Bulk Metallic Glasses by Ultrasonic Welding of Nickel Based Amorphous Ribbons

Article Preview

Abstract:

With the evolution of society new materials or classes of materials must be developed. The metallic alloys with amorphous structure have exceptional physical properties due to the spatial order of the atoms in structure and the absence of crystalline defects such as dislocations, grain boundaries, etc. Due to the metastable states in which these alloys are located, obtaining bulk materials from amorphous metal alloys is difficult, being limited to simple geometries and high production cost. This problem can be solved by using the ultrasonic welding of amorphous ribbons for the production of bulk metallic glasses.In this paper, we aimed to produce bulk metallic glasses materials by welding the ribbon packages in ultrasonic field. In order to prove the preservation of the amorphous structure of both the primary welding alloys as well as after the welding of the amorphous ribbons, Differential thermal analysis (DTA), X-ray diffraction (XRD), Scanning electron microscopy (SEM) analysis were carried out. Vickers micro-hardness test was also performed in order to reveal the mechanical properties in the welded joint.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-129

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kawamura, T. Shoji, Y. Ohno, Welding technologies of bulk metallic glasses, Journal of Non-Crystalline Solids, 2003,317, p.152–157.

DOI: 10.1016/s0022-3093(02)02005-7

Google Scholar

[2] Klas Weman, Welding processes handbook – Second edition, Woodhead Publishing Limited, Stockholm, (2012).

Google Scholar

[3] J.H. Kim, C. Lee, D. M. Lee, J.H. Sun, S.Y. Shin, J.C. Bae, Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass, Materials Science and Engineering A, 2007, 449-451, p.872–875.

DOI: 10.1016/j.msea.2006.02.323

Google Scholar

[4] L. Shao, A. Datye, J. Huang, J. Ketkaew, S. W. Sohn, S. Zhao, S. Wu, Y. Zhang, U. D. Schwarz, J. Schroers, Pulsed Laser Beam Welding of Pd43Cu27Ni10P20 Bulk Metallic Glass, Scientific Reports, 2017, 7, 7989.

DOI: 10.1038/s41598-017-08460-6

Google Scholar

[5] J. Kim, Y. Kawamura, Electron beam welding of the dissimilar Zrbased bulk metallic glass and Ti metal, Scripta Materialia, 2007, 56, p.709–712.

DOI: 10.1016/j.scriptamat.2006.12.046

Google Scholar

[6] Y. Kawamura, Y. Ohno, Spark welding of Zr55Al10Ni5Cu30 bulk metallic glasses, Scripta Materialia, 2001, 45, pp.127-132.

DOI: 10.1016/s1359-6462(01)01003-x

Google Scholar

[7] C. H. Wong, C. H. Shek, Friction welding of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass, Scripta Materialia, 2003, 49, p.393–397.

DOI: 10.1016/s1359-6462(03)00306-3

Google Scholar

[8] G. Wilde, Physical Metallurgy of Nanocrystalline Metals, Physical Metallurgy (Fifth Edition), 2014, pp.2707-2805.

DOI: 10.1016/b978-0-444-53770-6.00026-5

Google Scholar

[9] C. Codrean, V. A. Serban., Metale amorfe si nanocristaline, Ed. Politehnica Timisoara, 2007, pp.9-114.

Google Scholar

[10] J. A. Gallego-Juarez, K. F. Graff, Power Ultrasonics Applications of High-intensity Ultrasound, Woodhead Publishing, Cambridge, (2014).

Google Scholar

[11] X. Song, Z. Zhu, Y.Chen, Ultrasonic Welding of Fe78Si9B13 Metallic Glass, Materials Science Forum, Vols 809-810, 2015, pp.348-353.

Google Scholar

[12] J. Kim, Weldability of Cu54Zr22Ti18Ni6 bulk metallic glass by ultrasonic welding processing, Materials Letters, 2014, 130, p.160–163.

DOI: 10.1016/j.matlet.2014.05.056

Google Scholar

[13] W. Wu, J. Jiang, G. Lia, J. Ying, H. Fuh, H. Jianga, P. Gou, L. Zhang, W. Liu, J. Zhao, Ultrasonic additive manufacturing of bulk Ni-based metallic glass, Journal of Non-Crystalline Solids, 2019, 506, p.1–5.

DOI: 10.1016/j.jnoncrysol.2018.12.008

Google Scholar

[14] K. F. Graff, M. Short, M. Norfolk, Very high power ultrasonic additive manufacturing (VHP UAM) for advanced materials, in Solid freeform fabrication symposium,, Austin, Texas, (2010).

Google Scholar

[15] V.K. Patel, S.D. Bhole, D.L. Chen, Ultrasonic spot welding of aluminum to high-strength low-alloy steel: microstructure, tensile and fatigue properties, Metall. Mater. Trans. A, 2013, 45, p.2055- (2066).

DOI: 10.1007/s11661-013-2123-y

Google Scholar

[16] D. Ren, K. Zhao, M. Pan, Y. Chang, S. Gang, D. Zhao, Ultrasonic spot welding of magnesium alloy to titanium alloy, Scr. Mater. 2017, 126, pp.58-62.

DOI: 10.1016/j.scriptamat.2016.08.003

Google Scholar

[17] M. Maeda, Y. Takahashi, M. Fukuhara, X. Wang, A. Inoue, Ultrasonic bonding of Zr55Cu30Ni5Al10 metallic glass, Mater. Sci. Eng., B, 2008, 148, pp.141-144.

DOI: 10.1016/j.mseb.2007.09.028

Google Scholar

[18] A. A. Ward, M. R. French, D. N. Leonard, Z. C. Cordero, Grain growth during ultrasonic welding of nanocrystalline alloys, J. Mater. Process. Technol., 2018, 254, pp.373-382.

DOI: 10.1016/j.jmatprotec.2017.11.049

Google Scholar

[19] A. A Ward, Y. Zhang, Z. C. Cordero, Junction growth in ultrasonic spot welding and ultrasonic additive manufacturing, Acta Materialia , (2018).

DOI: 10.1016/j.actamat.2018.07.058

Google Scholar

[20] J.J. Byron, Vibratory welding process and apparatus, Sonobond Corp., (1962).

Google Scholar