[1]
Y. S. Al Jabbari, Physico- mechanical properties and prosthodontic applications of Co-Cr dental alloys: A review of the literature, Journal of Advanced Prosthodontics 6, pp.138-144 (2014).
DOI: 10.4047/jap.2014.6.2.138
Google Scholar
[2]
Information on http://www.arcam.com/wp-content/uploads/Arcam-ASTM-F75-Cobalt-Chrome.pdf , accessed: 24.09.(2019).
Google Scholar
[3]
S. Kapoor, R. Liu, X. J. Wu, M. X. Yao, Effects of chemical composition on solidification, microstructure and hardness of Co-Cr-W-Ni and Co-Cr-Mo-Ni alloy systems, International Journal of Recent Research and Applied Studies 5, pp.111-122 (2010).
Google Scholar
[4]
Information on https://www.kennametal.com/content/dam/kennametal/kennametal/common/ Resources/Catalogs-Literature/Stellite/B-18-05723_KMT_Stellite_Alloys_Brochure_Direct_ update_LR.pdf , accesed: 24.09.(2019).
DOI: 10.31399/asm.ad.co0128
Google Scholar
[5]
S. Baron, E. Ahearne, P. Connolly, S. Keaveney, G. Byrne, An assessment of medical grade cobalt chromium alloy ASTM F1537 as a difficult-to-cut (DTC) material, Proceedings of the Machine Tool Technologies Research Foundation Annual Meeting, pp.1-7 (2015).
Google Scholar
[6]
Zhang L., Tong H. and Li Y. Precision machining of micro tool electrodes in micro-EDM for drilling array micro holes, Precision Engineering, 39, pp.100-106, (2015).
DOI: 10.1016/j.precisioneng.2014.07.010
Google Scholar
[7]
Kumar RV, Pal A, Saha S, et al. A stepper-piezo-based co-actuation paradigm for tool positioning in parallel spark micro-electro-discharge machining, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230, p.2136–2139, (2016).
DOI: 10.1177/0954405415625926
Google Scholar
[8]
Gohil V and Puri YM., Statistical analysis of material removal rate and surface roughness in electrical discharge turning of titanium alloy (Ti-6Al-4V), Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,.
DOI: 10.1177/0954405416673104
Google Scholar
[9]
Nguyen VQ, Duong TH and Kim HC., Precision micro EDM based on real-time monitoring and electrode wear compensation, International Journal of Advanced Manufacturing Technology, 79(9–12), p.1829–1838, (2015).
DOI: 10.1007/s00170-015-6964-y
Google Scholar
[10]
Nirala CK and Saha P., Toward development of a new online tool wear compensation strategy in micro-electrodischarge machining drilling, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231, p.588–599. (2017).
DOI: 10.1177/0954405415578578
Google Scholar
[11]
Tristo G, Bissacco G, Lebar A, et al., Real time power consumption monitoring for energy efficiency analysis in micro EDM milling, International Journal of Advanced Manufacturing Technology, 78 (9–12), p.1511–1521, (2015).
DOI: 10.1007/s00170-014-6725-3
Google Scholar
[12]
Yaou Z, Ning H, Xiaoming K, et al., Experimental study of an electrostatic field-induced electrolyte jet electrical discharge machining process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,.
DOI: 10.1177/0954405415612327
Google Scholar
[13]
Khatri BC, Rathod P and Valaki JB., Ultrasonic vibration-assisted electric discharge machining: a research review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230(2), p.319–330, (2016).
DOI: 10.1177/0954405415573061
Google Scholar
[14]
Shabgard MR and Alenabi H., Ultrasonic assisted electrical discharge machining of Ti-6Al-4V alloy, Materials and Manufacturing Processes, 30(8), p.991–1000, (2015).
DOI: 10.1080/10426914.2015.1004686
Google Scholar
[15]
Tang L and Du YT, Experimental study on green electrical discharge machining in tap water of Ti-6Al-4V and parameters optimization, International Journal of Advanced Manufacturing Technology, 70 (1–4), p.469–475, (2014).
DOI: 10.1007/s00170-013-5274-5
Google Scholar
[16]
Plaza S, Sanchez JA, Perez E, et al., Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode, Precision Engineering, 38 (4): p.821–827, (2014).
DOI: 10.1016/j.precisioneng.2014.04.010
Google Scholar
[17]
Natarajan N and Suresh P., Experimental investigations on the micro-hole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator, International Journal of Advanced Manufacturing Technology, 77(9–12), p.1741–1750, (2015).
DOI: 10.1007/s00170-014-6494-z
Google Scholar
[18]
Kumkoon P, Raksiri C and Jansuwan C., Alloy Inconel 718 by 3D micro-electro discharge machining, Applied Mechanics and Materials, 590, p.239–243, (2014).
DOI: 10.4028/www.scientific.net/amm.590.239
Google Scholar
[19]
M. Ay, Cxaydasx U. and Hascxalık A., Optimization of micro-EDM drilling of Inconel 718 superalloy. International Journal of Advanced Manufacturing Technology, 66 (5–8), p.1015–1023, (2013).
DOI: 10.1007/s00170-012-4385-8
Google Scholar
[20]
M. Iwai, S. Ninomiya, K. Suzuki, Procedia CIRP, 6, pp.146-150 (2013).
Google Scholar
[21]
Z. Qinjian, Z. Luming, L. Jianyong, et al., Procedia CIRP, 6, pp.589-593, (2013).
Google Scholar
[22]
Van Dijck, F., Dutre, W., Heat conduction model for the calculation of the volume of molten metal in electric discharges, available at: https://iopscience.iop.org/article/10.1088/0022-3727/7/6/316 , accessed: 22.09.(2019).
Google Scholar
[23]
Schulze, H.-P., Wollenberg, G., Mecke, K, Trautmann, H.-J., Propagation of Gas Bubble at Spark Erosion in Small Working Gap. IEEE Proceeding of ICPADM 2006, Bali, Indonesia, pp.665-668, (2006).
DOI: 10.1109/icpadm.2006.284265
Google Scholar
[24]
Information on http://specialmetals.ir/images/technical_info/cobalt_base/Stellite%2025.pdf, accessed 24.09.(2019).
Google Scholar
[25]
Information on https://www.3t-am.com/cobalt-chrome-alloy-co28cr6mo, accessed 24.09.(2019).
Google Scholar