[1]
K. Zsuzsanna, N. Gyula and L. János, COD assessment of S960M grade steel at different temperatures, 72nd IIW Annual Assembly and International Conference: Proceedings of International Conference (2019) Paper: IIW-DOC X-1958-19.
Google Scholar
[2]
M. Eshraghi, M.A. Tschopp, M.A. Zaeem and S. D. Felicelli, A Parametric Study of Resistance Spot Welding of a Dual-Phase Steel Using Finite Element Analysis, The 8th Pacific Rim International Congress on Advanced Materials and Processing, (TMS) The Minerals, Metals & Materials Society), (2013) 3073-3080.
DOI: 10.1007/978-3-319-48764-9_379
Google Scholar
[3]
A. Wrozyna, M. Pernach, R. Kuziak, and M. Pietrzyk, Experimental and Numerical Simulations of Phase Transformations Occurring During Continuous Annealing of DP Steel Strips, Journal of Materials Engineering and Performance, 25(4) (2016) 1481–1491,.
DOI: 10.1007/s11665-016-1907-9
Google Scholar
[4]
Ádám, Dobosy and János Lukács, Welding Properties and Fatigue Resistance of S690QL High Strength Steels, Materials Science Forum 812 pp.29-34. 6 p. (2015).
DOI: 10.4028/www.scientific.net/msf.812.29
Google Scholar
[5]
G. C. C. Correard, G. P. Miranda and M. S. F. Lima, Development of laser beam welding of advanced high-strength steels, Int. J. Adv. Manuf. Technol. 83 (2016) 1967–(1977).
DOI: 10.1007/s00170-015-7701-2
Google Scholar
[6]
P. László, B. Zoltán and A. Balogh, Development of Complex Spot-Welding Technologies for Automotive DP Steels with FEM Support, DOI 10.1007/978-3-319-51189-4_36.
Google Scholar
[7]
J. Li, S.S. Nayak, E. Biro, S.K. Panda, F. Goodwin, and Y. Zhou, Effects of weld line position and geometry on the formability of laser welded high strength low alloy and dual-phase steel blanks. Mater. Des., 52 (2013) 757–66.
DOI: 10.1016/j.matdes.2013.06.021
Google Scholar
[8]
M.P. Miles, J. Pew, T.W. Nelson, and M. Li, Formability of friction stir welded dual phase steel sheets, Frict. Stir Weld. Process.III, 3, (2005) 91–96.
DOI: 10.1179/174329306x107737
Google Scholar
[9]
M. Asadi and H. Palkowski, Influence of Load Paths and Bake Hardening Conditions on The Mechanical Properties of Dual Phase Steel, Materials Processing Fundamentals, TMS (The Minerals, Metals & Materials Society), (2013).
DOI: 10.1002/9781118662199.ch9
Google Scholar
[10]
RWK Honeycombe, HKDH Bhadeshia, Steels: Microstructure and Properties, 2nd Ed. Oxford: Butterworth-Heinemann, (1995).
Google Scholar
[11]
Zhao Zheng-zhi, Jin Guang-can, Niu Feng, Tang Di and Zhao Ai-min, Microstructure evolution and mechanical properties of 1000 MPa cold rolled dual-phase steel, Trans. Nonferrous Met. Soc. China, 19 (2009) 563-568.
DOI: 10.1016/s1003-6326(10)60109-4
Google Scholar
[12]
B. Varbai, T. Pickle and K. Májlinger, Development and Comparison of Quantitative Phase Analysis for Duplex Stainless-Steel Weld, Periodica Polytechnica-Mechanical Engineering 62 (2018) 247-253.
DOI: 10.3311/ppme.12234
Google Scholar
[13]
R. Davies, Influence of Martensite Composition and Content on the Properties of Dual phase Steels, Metallurgical Transactions A, 9A, No. 5, (1978), 671-679.
DOI: 10.1007/bf02659924
Google Scholar
[14]
Á. Dobosy and L. János, The effect of the filler material choice on the high cycle fatigue resistance of high strength steel welded joints, Materials Science Forum 885 (2017) 111-116.
DOI: 10.4028/www.scientific.net/msf.885.111
Google Scholar
[15]
J. Zhang, A. Khan, A.O. Olanrewaju, N. Zhou and D. Chen, Analysis of Microstructural Changes in the Heat-Affected Zone and Fusion Zone of a Fiber Laser Welded DP980 Steel, The Minerals, Metals & Materials Society and ASM International, 46B (2015) 1638-1646.
DOI: 10.1007/s11663-014-0283-9
Google Scholar
[16]
Parker K., Welding with high power diode Lasers, coherent, www.Coherent.com.
Google Scholar
[17]
L. János, L. Kuzsella, K. Zsuzsanna, M. Gáspár and Á. Meilinger, Role of the Physical Simulation for the Estimation of the Weldability of High Strength Steels and Aluminum Alloys, Materials Science Forum 812 (2015) 149-154.
DOI: 10.4028/www.scientific.net/msf.812.149
Google Scholar
[18]
H. Tervo, J. Mourujärvi, A. Kaijalainen and J. Kömi, Mechanical Properties in the Physically Simulated Heat-Affected Zones of 500 MPa Offshore Steel for Arctic Conditions, Lecture Notes in Mechanical Engineering (2018) 779-788.
DOI: 10.1007/978-3-319-75677-6_66
Google Scholar
[19]
H. Tervo, S. Pallaspuro, A. Kaijalainen, D. Porter, J. Kömi, S. Mehtonen and T. Pikkarainen, Detrimental Effect of Coarse Titanium-Niobium Nitrides on the Fracture Toughness of the CGHAZ in a 500 MPa Offshore Steel for Cold Climate Conditions, Proc. 10th International Conference on Clean Steel, (2018) Budapest, Hungary.
DOI: 10.1016/j.msea.2019.138719
Google Scholar
[20]
S.J. Heikkilä, D.A. Porter, L.P. Karjalainen, R.O. Laitinen, S.A. Tihinen and P. P. Suikkanen, Hardness Profiles of Quenched Steel Heat Affected Zones, Phys. Numer. Simul. Mater. Process. 762 (2013) 722–727.
DOI: 10.4028/www.scientific.net/MSF.762.722
Google Scholar
[21]
LaserLine GmbH, Germany, Manual Diode laser, LDM 4000-100.
Google Scholar