Simulation and Experimental Based Analysis of the Laser Beam Welding of DP Steels

Article Preview

Abstract:

In this paper, heat affected zone characteristics of DP1000 steels was investigated during diode laser beam welding (LBW). A butt-welded joint of specimen in dimension of 300 x 150 mm each (according to EN15614-11:2002) with 1 mm thickness is used for the experimental purpose. The welding thermal cycle and the cooling circumstances in the HAZ was determined by real experiment and the physical simulation. A Gleeble 3500 thermo-physical simulator was used to physically simulate the coarse grain heat affected zone (CGHAZ) on the base material specimens by the utilization of the thermal cycles for t8/5 =2.5 s. The results of the physical simulation were validated by real welding experiments. The properties of the simulated and the real HAZ was examined by optical microscopic, scanning electron microscope and hardness tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-82

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Zsuzsanna, N. Gyula and L. János, COD assessment of S960M grade steel at different temperatures, 72nd IIW Annual Assembly and International Conference: Proceedings of International Conference (2019) Paper: IIW-DOC X-1958-19.

Google Scholar

[2] M. Eshraghi, M.A. Tschopp, M.A. Zaeem and S. D. Felicelli, A Parametric Study of Resistance Spot Welding of a Dual-Phase Steel Using Finite Element Analysis, The 8th Pacific Rim International Congress on Advanced Materials and Processing, (TMS) The Minerals, Metals & Materials Society), (2013) 3073-3080.

DOI: 10.1007/978-3-319-48764-9_379

Google Scholar

[3] A. Wrozyna, M. Pernach, R. Kuziak, and M. Pietrzyk, Experimental and Numerical Simulations of Phase Transformations Occurring During Continuous Annealing of DP Steel Strips, Journal of Materials Engineering and Performance, 25(4) (2016) 1481–1491,.

DOI: 10.1007/s11665-016-1907-9

Google Scholar

[4] Ádám, Dobosy and János Lukács, Welding Properties and Fatigue Resistance of S690QL High Strength Steels, Materials Science Forum 812 pp.29-34. 6 p. (2015).

DOI: 10.4028/www.scientific.net/msf.812.29

Google Scholar

[5] G. C. C. Correard, G. P. Miranda and M. S. F. Lima, Development of laser beam welding of advanced high-strength steels, Int. J. Adv. Manuf. Technol. 83 (2016) 1967–(1977).

DOI: 10.1007/s00170-015-7701-2

Google Scholar

[6] P. László, B. Zoltán and A. Balogh, Development of Complex Spot-Welding Technologies for Automotive DP Steels with FEM Support, DOI 10.1007/978-3-319-51189-4_36.

Google Scholar

[7] J. Li, S.S. Nayak, E. Biro, S.K. Panda, F. Goodwin, and Y. Zhou, Effects of weld line position and geometry on the formability of laser welded high strength low alloy and dual-phase steel blanks. Mater. Des., 52 (2013) 757–66.

DOI: 10.1016/j.matdes.2013.06.021

Google Scholar

[8] M.P. Miles, J. Pew, T.W. Nelson, and M. Li, Formability of friction stir welded dual phase steel sheets, Frict. Stir Weld. Process.III, 3, (2005) 91–96.

DOI: 10.1179/174329306x107737

Google Scholar

[9] M. Asadi and H. Palkowski, Influence of Load Paths and Bake Hardening Conditions on The Mechanical Properties of Dual Phase Steel, Materials Processing Fundamentals, TMS (The Minerals, Metals & Materials Society), (2013).

DOI: 10.1002/9781118662199.ch9

Google Scholar

[10] RWK Honeycombe, HKDH Bhadeshia, Steels: Microstructure and Properties, 2nd Ed. Oxford: Butterworth-Heinemann, (1995).

Google Scholar

[11] Zhao Zheng-zhi, Jin Guang-can, Niu Feng, Tang Di and Zhao Ai-min, Microstructure evolution and mechanical properties of 1000 MPa cold rolled dual-phase steel, Trans. Nonferrous Met. Soc. China, 19 (2009) 563-568.

DOI: 10.1016/s1003-6326(10)60109-4

Google Scholar

[12] B. Varbai, T. Pickle and K. Májlinger, Development and Comparison of Quantitative Phase Analysis for Duplex Stainless-Steel Weld, Periodica Polytechnica-Mechanical Engineering 62 (2018) 247-253.

DOI: 10.3311/ppme.12234

Google Scholar

[13] R. Davies, Influence of Martensite Composition and Content on the Properties of Dual phase Steels, Metallurgical Transactions A, 9A, No. 5, (1978), 671-679.

DOI: 10.1007/bf02659924

Google Scholar

[14] Á. Dobosy and L. János, The effect of the filler material choice on the high cycle fatigue resistance of high strength steel welded joints, Materials Science Forum 885 (2017) 111-116.

DOI: 10.4028/www.scientific.net/msf.885.111

Google Scholar

[15] J. Zhang, A. Khan, A.O. Olanrewaju, N. Zhou and D. Chen, Analysis of Microstructural Changes in the Heat-Affected Zone and Fusion Zone of a Fiber Laser Welded DP980 Steel, The Minerals, Metals & Materials Society and ASM International, 46B (2015) 1638-1646.

DOI: 10.1007/s11663-014-0283-9

Google Scholar

[16] Parker K., Welding with high power diode Lasers, coherent, www.Coherent.com.

Google Scholar

[17] L. János, L. Kuzsella, K. Zsuzsanna, M. Gáspár and Á. Meilinger, Role of the Physical Simulation for the Estimation of the Weldability of High Strength Steels and Aluminum Alloys, Materials Science Forum 812 (2015) 149-154.

DOI: 10.4028/www.scientific.net/msf.812.149

Google Scholar

[18] H. Tervo, J. Mourujärvi, A. Kaijalainen and J. Kömi, Mechanical Properties in the Physically Simulated Heat-Affected Zones of 500 MPa Offshore Steel for Arctic Conditions, Lecture Notes in Mechanical Engineering (2018) 779-788.

DOI: 10.1007/978-3-319-75677-6_66

Google Scholar

[19] H. Tervo, S. Pallaspuro, A. Kaijalainen, D. Porter, J. Kömi, S. Mehtonen and T. Pikkarainen, Detrimental Effect of Coarse Titanium-Niobium Nitrides on the Fracture Toughness of the CGHAZ in a 500 MPa Offshore Steel for Cold Climate Conditions, Proc. 10th International Conference on Clean Steel, (2018) Budapest, Hungary.

DOI: 10.1016/j.msea.2019.138719

Google Scholar

[20] S.J. Heikkilä, D.A. Porter, L.P. Karjalainen, R.O. Laitinen, S.A. Tihinen and P. P. Suikkanen, Hardness Profiles of Quenched Steel Heat Affected Zones, Phys. Numer. Simul. Mater. Process. 762 (2013) 722–727.

DOI: 10.4028/www.scientific.net/MSF.762.722

Google Scholar

[21] LaserLine GmbH, Germany, Manual Diode laser, LDM 4000-100.

Google Scholar