Earth Abundant Metals as Cost Effective Alternatives in Photocatalytic Applications: A Review

Article Preview

Abstract:

In a quest for a cleaner planet and to have alternative forms of energy generation apart from the fossil-based power supply, fuel cell technology has emerged as an alternative energy source for usage across all economic sectors. The application of this age-old technology is found in alkaline (AFC), molten carbonate (MCFC), phosphoric acid (PAFC), polymer electrolyte membrane (PEMFC) and solid oxide (SOFC) fuel cells. These fuel cells are named based on the type of electrolyte employed in their applications and the fuel of choice for energy generation is hydrogen. This fuel can be used in its pure form or extracted from other sources such as methanol, water and syngas. Ammonia in its liquefied and gaseous forms may be used as a non-carbonaceous fuel for the hydrogen source in some of these fuel cell technologies due to its safety, lower price, ease of storage and transportation. In this review, all the fuel cells will be investigated in their capability of using ammonia as a direct fuel. The role of earth abundant metal catalysts in comparison to TiO2 was evaluated in terms of molecular orbital theory and in the decomposition of organic compounds and other material into nitrogen and hydrogen products under the visible light radiation. The p-orbital participation in earth abundant metals or metal oxides doping, emerged as a strong contribution to bandgap attenuation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-146

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hans-Wilhelm and H. Schiffer, World Energy Resources | 2016,, World Energy Counc., p.1–10, (2016).

Google Scholar

[2] Energy - State of the Environment South Africa - Environmetal affairs,, Department of Environmental Affairs, 2013. [Online]. Available: http://soer.environment.gov.za/DEA_-_Main_doc_-_Chapter_12_ZnNWB.pdf.file. [Accessed: 07-May-2018].

Google Scholar

[3] Energy and the Environment Explained - Greenhouse Gases' Effect on the Climate," U.S. Energy Information Administration, 2017. [Online]. Available: www.eia.gov/energyexplained/index.php,page=environment_how_ghg_affect_climate. [Accessed: 07-May-2018].

Google Scholar

[4] J. M. Andújar and F. Segura, Fuel cells: History and updating. A walk along two centuries,, Renew. Sustain. Energy Rev., vol. 13, no. 9, p.2309–2322, (2009).

DOI: 10.1016/j.rser.2009.03.015

Google Scholar

[5] F. Ishak, I. Dincer, and C. Zamfirescu, Thermodynamic analysis of ammonia-fed solid oxide fuel cells,, J. Power Sources, vol. 202, p.157–165, (2012).

DOI: 10.1016/j.jpowsour.2011.10.142

Google Scholar

[6] R. Lan and S. Tao, Ammonia as a Suitable Fuel for Fuel Cells,, Front. Energy Res., vol. 2, no. August, p.3–6, (2014).

Google Scholar

[7] D. Cheddie, Ammonia as a Hydrogen Source for Fuel Cells: A Review,, Hydrog. Energy - Challenges Perspect., (2012).

Google Scholar

[8] K. Siddharth, Y. Chan, L. Wang, and M. Shao, Ammonia electro-oxidation reaction: Recent development in mechanistic understanding and electrocatalyst design,, Curr. Opin. Electrochem., vol. 9, no. 5, p.151–157, (2018).

DOI: 10.1016/j.coelec.2018.03.011

Google Scholar

[9] A. D. CAIRNS, E J; SIMONS, E L; TEVEBAUGH, Ammonia – Oxygen Fuel Cell,, Nature, vol. 217, p.780–781, (1968).

DOI: 10.1038/217780a0

Google Scholar

[10] E. L. Simons, E. J. Cairns, and D. J. Surd, The Performance of Direct Ammonia Fuel Cells,, J. Electrochem. Soc., vol. 116, no. 5, p.556–561, (1969).

DOI: 10.1149/1.2411961

Google Scholar

[11] R. Lan and S. Tao, Direct Ammonia Alkaline Anion-Exchange Membrane Fuel Cells,, Electrochem. Solid-State Lett., vol. 13, no. 8, p. B83, (2010).

DOI: 10.1149/1.3428469

Google Scholar

[12] J. Yang, H. Muroyama, T. Matsui, and K. Eguchi, Development of a direct ammonia-fueled molten hydroxide fuel cell,, J. Power Sources, vol. 245, p.277–282, (2014).

DOI: 10.1016/j.jpowsour.2013.06.143

Google Scholar

[13] R. Lan and S. Tao, Ammonia Carbonate Fuel Cells Based on a Mixed NH4+/H+ Ion Conducting Electrolyte,, ECS Electrochem. Lett., vol. 2, no. 5, pp. F37–F40, (2013).

DOI: 10.1149/2.007305eel

Google Scholar

[14] S. T. Szymanski, G. A. Gruver, M. Katz, and H. R. Kunz, The Effect of Ammonia on Hydrogen‐Air Phosphoric Acid Fuel Cell Performance,, J. Electrochem. Soc., vol. 127, no. 7, p.127, (1980).

DOI: 10.1149/1.2129926

Google Scholar

[15] N. Rajalakshmi, T. T. Jayanth, and K. S. Dhathathreyan, Effect of Carbon Dioxide and Ammonia on Polymer Electrolyte Membrane Fuel Cell Stack Performance,, Fuel Cells, vol. 3, no. 4, p.177–180, (2003).

DOI: 10.1002/fuce.200330107

Google Scholar

[16] R. Halseid, P. J. S. Vie, and R. Tunold, Effect of ammonia on the performance of polymer electrolyte membrane fuel cells,, J. Power Sources, vol. 154, no. 2, p.343–350, (2006).

DOI: 10.1016/j.jpowsour.2005.10.011

Google Scholar

[17] Y. A. Gomez, A. Oyarce, G. Lindbergh, and C. Lagergren, Ammonia Contamination of a Proton Exchange Membrane Fuel Cell,, J. Electrochem. Soc., vol. 165, no. 3, pp. F189–F197, (2018).

DOI: 10.1149/2.0761803jes

Google Scholar

[18] A. Wojcik, H. Middleton, I. Damopoulos, and J. Van Herle, Ammonia as a fuel in solid oxide fuel cells,, J. Power Sources, vol. 118, no. 1–2, p.342–348, (2003).

DOI: 10.1016/s0378-7753(03)00083-1

Google Scholar

[19] A. Afif, N. Radenahmad, Q. Cheok, S. Shams, J. H. Kim, and A. K. Azad, Ammonia-fed fuel cells: A comprehensive review,, Renew. Sustain. Energy Rev., vol. 60, p.822–835, (2016).

DOI: 10.1016/j.rser.2016.01.120

Google Scholar

[20] H. Yuzawa, T. Mori, H. Itoh, and H. Yoshida, Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst,, J. Phys. Chem. C, vol. 116, no. 6, p.4126–4136, (2012).

DOI: 10.1021/jp209795t

Google Scholar

[21] M. Zendehzaban, S. Sharifnia, and S. N. Hosseini, Photocatalytic degradation of ammonia by light expanded clay aggregate (LECA)-coating of TiO2nanoparticles,, Korean J. Chem. Eng., vol. 30, no. 3, p.574–579, (2013).

DOI: 10.1007/s11814-012-0212-z

Google Scholar

[22] J. Liu, B. Liu, Z. Ni, Y. Deng, C. Zhong, and W. Hu, Improved catalytic performance of Pt/TiO2nanotubes electrode for ammonia oxidation under UV-light illumination,, Electrochim. Acta, vol. 150, p.146–150, (2014).

DOI: 10.1016/j.electacta.2014.10.119

Google Scholar

[23] A. Utsunomiya et al., Mechanistic study of reaction mechanism on ammonia photodecomposition over Ni/TiO2photocatalysts,, Appl. Catal. B Environ., vol. 206, p.378–383, (2017).

Google Scholar

[24] A. Wold, Photocatalytic Properties of TiO2,, Chem. Mater., vol. 5, no. 3, p.280–283, (1993).

Google Scholar

[25] J. Schneider et al., Understanding TiO2photocatalysis: Mechanisms and materials,, Chem. Rev., vol. 114, no. 19, p.9919–9986, (2014).

Google Scholar

[26] B. Su, Z. C. Cao, and Z. J. Shi, Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations,, Acc. Chem. Res., vol. 48, no. 3, p.886–896, (2015).

DOI: 10.1021/ar500345f

Google Scholar

[27] D. Wang and D. Astruc, The recent development of efficient Earth-abundant transition-metal nanocatalysts,, Chem. Soc. Rev., vol. 46, no. 3, p.2, (2017).

DOI: 10.1039/c6cs00629a

Google Scholar

[28] M. A. Lahmer, The effect of doping with rare earth elements (Sc, Y, and La) on the stability, structural, electronic and photocatalytic properties of the O-termintaed ZnO surface; a first-principles study,, Appl. Surf. Sci., vol. 457, no. May, p.315–322, (2018).

DOI: 10.1016/j.apsusc.2018.06.273

Google Scholar

[29] A. V. Emeline, G. V. Kataeva, V. K. Ryabchuk, and N. Serpone, Photostimulated generation of defects and surface reactions on a series of wide band gap metal-oxide solids,, J. Phys. Chem. B, vol. 103, no. 43, p.9190–9199, (1999).

DOI: 10.1021/jp990664z

Google Scholar

[30] S. Fukuzumi, J. Yuasa, N. Satoh, and T. Suenobu, Scandium ion-promoted photoinduced electron transfer from electron donors to acridine and pyrene. Essential role of scandium ion in photocatalytic oxygenation of hexamethylbenzene,, J. Am. Chem. Soc., vol. 126, no. 24, p.7585–7594, (2004).

DOI: 10.1021/ja031649h

Google Scholar

[31] M. Hirano and T. Ito, Direct formation of new, phase-stable, and photoactive anatase-type Ti1-2XNbXScXO2solid solution nanoparticles by hydrothermal method,, Mater. Res. Bull., vol. 43, no. 8–9, p.2196–2206, (2008).

DOI: 10.1016/j.materresbull.2007.08.027

Google Scholar

[32] A. A. Cavalheiro, J. C. Bruno, M. J. Saeki, J. P. S. Valente, and A. O. Florentino, Effect of scandium on the structural and photocatalytic properties of titanium dioxide thin films,, J. Mater. Sci., vol. 43, no. 2, p.602–608, (2008).

DOI: 10.1007/s10853-007-1743-2

Google Scholar

[33] D. R. Zhang, H. L. Liu, S. Y. Han, and W. X. Piao, Synthesis of Sc and V-doped TiO2nanoparticles and photodegradation of rhodamine-B,, J. Ind. Eng. Chem., vol. 19, no. 6, p.1838–1844, (2013).

Google Scholar

[34] Y. Wang, K. Tang, B. Zhu, D. Wang, Q. Hao, and Y. Wang, Synthesis and structure of a new layered oxyfluoride Sr2ScO3F with photocatalytic property,, Mater. Res. Bull., vol. 65, p.42–46, (2015).

DOI: 10.1016/j.materresbull.2015.01.042

Google Scholar

[35] M. Nasir, J. Lei, W. Iqbal, and J. Zhang, Study of synergistic effect of Sc and C co-doping on the enhancement of visible light photo-catalytic activity of TiO2,, Appl. Surf. Sci., vol. 364, p.446–454, (2016).

DOI: 10.1016/j.apsusc.2015.12.166

Google Scholar

[36] T. S. Jamil, H. A. Abbas, R. A. Nasr, A. A. El-Kady, and M. I. M. Ibrahim, Detoxification of aflatoxin B1using nano-sized Sc-doped SrTi0.7Fe0.3O3under visible light,, J. Photochem. Photobiol. A Chem., vol. 341, p.127–135, (2017).

DOI: 10.1016/j.jphotochem.2017.03.023

Google Scholar

[37] D. R. Zhang, Y. H. Kim, and Y. S. Kang, Synthesis and characterization of nanoparticle of TiO2co-doped with Sc3+and V5+ions,, Curr. Appl. Phys., vol. 6, no. 4, p.801–804, (2006).

DOI: 10.1016/j.cap.2005.04.043

Google Scholar

[38] H. Li, G. Zhao, Z. Chen, G. Han, and B. Song, Low temperature synthesis of visible light-driven vanadium doped titania photocatalyst,, J. Colloid Interface Sci., vol. 344, no. 2, p.247–250, (2010).

DOI: 10.1016/j.jcis.2010.01.019

Google Scholar

[39] G. N. Shao, S. M. Imran, S. J. Jeon, S. J. Kang, S. M. Haider, and H. T. Kim, Sol–gel synthesis of vanadium doped titania: Effect of the synthetic routes and investigation of their photocatalytic properties in the presence of natural sunlight,, Appl. Surf. Sci., vol. 351, p.1213–1223, (2015).

DOI: 10.1016/j.apsusc.2015.06.047

Google Scholar

[40] D. Lu et al., Applied Surface Science Facile one-pot fabrication and high photocatalytic performance of vanadium doped TiO 2 -based nanosheets for visible-light-driven degradation of RhB or Cr(VI ),, Appl. Surf. Sci., vol. 359, p.435–448, (2015).

DOI: 10.1016/j.apsusc.2015.10.138

Google Scholar

[41] Y. Zhou, P. Liu, F. Jiang, J. Tian, H. Cui, and J. Yang, Vanadium sulfide sub-microspheres: A new near-infrared-driven photocatalyst,, J. Colloid Interface Sci., vol. 498, p.442–448, (2017).

DOI: 10.1016/j.jcis.2017.03.081

Google Scholar

[42] R. Camposeco, S. Castillo, M. Hinojosa-Reyes, I. Mejía-Centeno, and R. Zanella, Effect of incorporating vanadium oxide to TiO2, Zeolite-ZM5, SBA and P25 supports on the photocatalytic activity under visible light,, J. Photochem. Photobiol. A Chem., vol. 367, no. March, p.178–187, (2018).

DOI: 10.1016/j.jphotochem.2018.08.011

Google Scholar

[43] X. Zhou et al., Improved electron-hole separation and migration in V2O5/rutile-anatase photocatalyst system with homo-hetero junctions and its enhanced photocatalytic performance,, Chem. Eng. J., vol. 330, no. 2103, p.294–308, (2017).

DOI: 10.1016/j.cej.2017.07.146

Google Scholar

[44] M. Nishikawa et al., Visible light responsive vanadium-substituted hydroxyapatite photocatalysts,, J. Photochem. Photobiol. A Chem., vol. 311, p.30–34, (2015).

Google Scholar

[45] M. Pérez-Nicolás, I. Navarro-Blasco, J. M. Fernández, and J. I. Alvarez, Atmospheric NOx removal: Study of cement mortars with iron- and vanadium-doped TiO2as visible light–sensitive photocatalysts,, Constr. Build. Mater., vol. 149, p.257–271, (2017).

DOI: 10.1016/j.conbuildmat.2017.05.132

Google Scholar

[46] G. Rossi et al., Charge carrier dynamics and visible light photocatalysis in vanadium-doped TiO2nanoparticles,, Appl. Catal. B Environ., vol. 237, no. April, p.603–612, (2018).

Google Scholar

[47] J. Yang et al., BiVO4quantum tubes loaded on reduced graphene oxide aerogel as efficient photocatalyst for gaseous formaldehyde degradation,, Carbon N. Y., vol. 138, p.118–124, (2018).

DOI: 10.1016/j.carbon.2018.06.003

Google Scholar

[48] M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,, vol. 216, p.505–516, (2003).

DOI: 10.1016/s0021-9517(02)00104-5

Google Scholar

[49] H. Zhu et al., Novel chromium doped perovskites A2ZnTiO6(A = Pr, Gd): Synthesis, crystal structure and photocatalytic activity under simulated solar light irradiation,, Appl. Surf. Sci., vol. 393, p.348–356, (2017).

DOI: 10.1016/j.apsusc.2016.10.038

Google Scholar

[50] A. Iyer, H. Galindo, S. Sithambaram, C. King'ondu, C. H. Chen, and S. L. Suib, Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation,, Appl. Catal. A Gen., vol. 375, no. 2, p.295–302, (2010).

DOI: 10.1016/j.apcata.2010.01.012

Google Scholar

[51] P. Sangaiya and R. Jayaprakash, Tuning effect of Sn doping on structural, morphological, optical, electrical and photocatalytic properties of iron oxide nanoparticles,, Mater. Sci. Semicond. Process., vol. 85, no. May, p.40–51, (2018).

DOI: 10.1016/j.mssp.2018.05.033

Google Scholar

[52] J. Li, S. Meng, J. Niu, and H. Lu, Electronic structures and optical properties of monoclinic ZrO2 studied by first-principles local density approximation + U approach,, J. Adv. Ceram., vol. 6, no. 1, p.43–49, (2017).

DOI: 10.1007/s40145-016-0216-y

Google Scholar

[53] C. Dhandapani et al., Drastic photocatalytic degradation of methylene blue dye by neodymium doped zirconium oxide as photocatalyst under visible light irradiation,, Optik (Stuttg)., vol. 127, no. 22, p.10288–10296, (2016).

DOI: 10.1016/j.ijleo.2016.08.048

Google Scholar

[54] C. Gionco, M. C. Paganini, E. Giamello, O. Sacco, V. Vaiano, and D. Sannino, Rare earth oxides in zirconium dioxide: How to turn a wide band gap metal oxide into a visible light active photocatalyst,, J. Energy Chem., vol. 26, no. 2, p.270–276, (2017).

DOI: 10.1016/j.jechem.2016.07.006

Google Scholar

[55] O. Pliekhov, O. Pliekhova, Y. O. Donar, A. Sınağ, N. N. Tušar, and U. L. Štangar, Enhanced photocatalytic activity of carbon and zirconium modified TiO2,, Catal. Today, vol. 284, p.215–220, (2017).

DOI: 10.1016/j.cattod.2016.12.027

Google Scholar

[56] N. P. de Moraes, C. A. S. H. de Azeredo, L. A. Bacetto, M. L. C. P. da Silva, and L. A. Rodrigues, The effect of C-doping on the properties and photocatalytic activity of ZrO2prepared via sol-gel route,, Optik (Stuttg)., vol. 165, p.302–309, (2018).

DOI: 10.1016/j.ijleo.2018.03.133

Google Scholar

[57] B. R. Singh, M. Shoeb, W. Khan, and A. H. Naqvi, Synthesis of graphene/zirconium oxide nanocomposite photocatalyst for the removal of rhodamineB dye from aqueous environment,, J. Alloys Compd., vol. 651, p.598–607, (2015).

DOI: 10.1016/j.jallcom.2015.05.231

Google Scholar

[58] Z. Ye, L. Chen, H. Chen, L. Han, Q. Chen, and D. Wang, α-Zirconium phosphate nanocrystals with various morphology for photocatalysis,, Chem. Phys. Lett., vol. 709, no. May, p.96–102, (2018).

DOI: 10.1016/j.cplett.2018.08.046

Google Scholar

[59] F. Wang et al., Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance,, J. Colloid Interface Sci., vol. 508, p.237–247, (2017).

DOI: 10.1016/j.jcis.2017.08.056

Google Scholar

[60] C. S. Kim, J. W. Shin, S. H. An, H. D. Jang, and T. O. Kim, Photodegradation of volatile organic compounds using zirconium-doped TiO2/SiO2visible light photocatalysts,, Chem. Eng. J., vol. 204–205, p.40–47, (2012).

DOI: 10.1016/j.cej.2012.07.093

Google Scholar

[61] N. Biswal, D. P. Das, S. Martha, and K. M. Parida, Efficient hydrogen production by composite photocatalyst CdS-ZnS/Zirconium-titanium phosphate (ZTP) under visible light illumination,, Int. J. Hydrogen Energy, vol. 36, no. 21, p.13452–13460, (2011).

DOI: 10.1016/j.ijhydene.2011.07.106

Google Scholar

[62] J. C. Kotz, P. M. Treichel, J. R. Townsend, and D. A. Treichel, Electron Configuration of Atoms,, in Chemistry & Chemical Reactivity, 10th ed., Boston: Cengage Learning, 2017, p.315–323.

Google Scholar

[63] Y. Wang et al., Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts,, Nat. Energy, vol. 4, no. 9, p.746–760, (2019).

Google Scholar

[64] C. Förster and K. Heinze, Photophysics and photochemistry with Earth-abundant metals-fundamentals and concepts,, Chem. Soc. Rev., vol. 49, no. 4, p.1057–1070, (2020).

DOI: 10.1039/c9cs00573k

Google Scholar