[1]
K. Miura, N. Yamada, S. Hanada e T. K. Jung, The bone tissue compatibilitty of a new Ti-Nb-Sn alloy with a low young´s modulus,, Acta Biomaterialia, vol. 7, pp.2320-2326, (2011).
DOI: 10.1016/j.actbio.2011.02.008
Google Scholar
[2]
Y. L. Zhou e D. M. Lou, Microstructures and mechanical properties of Ti-Mo alloys cold-rolled and heat treated,,, Materials Caracterizations, vol. 62, pp.931-937, (2011).
DOI: 10.1016/j.matchar.2011.07.010
Google Scholar
[3]
S. X. Liang, X. J. Feng, L. X. Yin, M. Z. Ma e R. P. Liu, Development of a new β Ti alloy with low modulus and favorable plasticity for implant material,, Materials Science and Engineering: C, vol. 61, pp.338-343, (2016).
DOI: 10.1016/j.msec.2015.12.076
Google Scholar
[4]
Y. P. Hou, S. Guo, X. L. Qiao, T. Tian, Q. K. Meng, X. N. Cheng e X. Q. Zhao, Origin of ultralow Young׳s modulus in a metastable β-type Ti–33Nb–4Sn alloy,, Journal of the Mechanical Behavior of Biomedical Materials, vol. 59, pp.220-225, (2016).
DOI: 10.1016/j.jmbbm.2015.12.037
Google Scholar
[5]
Y. L. Hao, S. J. Li, S. Y. Sun e R. Yang, Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys,, Materials Science Engineering A, vol. 441, pp.112-118, (2006).
DOI: 10.1016/j.msea.2006.09.051
Google Scholar
[6]
M. Niinomi, M. Nakai e J. Hieda, Development of new metallic alloys for biomedical applications,, ACTA BIOMATERIALIA, vol. 8, nº 11, pp.3888-3903, (2012).
DOI: 10.1016/j.actbio.2012.06.037
Google Scholar
[7]
Y. F. Zheng, B. L. Wang, J. G. Wang e L. C. Zhao, Corrosion behavior of Ti-Nb-Sn shape memory alloys in different simulated body solutions,, Materials Science and Engineering A, vol. 438, pp.891-895, (2006).
DOI: 10.1016/j.msea.2006.01.131
Google Scholar
[8]
Thiago Figueiredo Azevedo, Carlos Eduardo Celestino de Andrade, Silvando Vieira dos Santos, Abraão Santos Silva, SandroGriza, Fatigue and corrosion-fatigue strength of hot rolled Ti35Nb2.5Sn alloy, Materials & Design Volume 85, 15 November 2015, Pages 607-612.
DOI: 10.1016/j.matdes.2015.07.045
Google Scholar
[9]
Thiago Figueiredo Azevedo, Tiago Nunes Lima, Juan Garcia de Blas, Luiz Carlos Pereira, Sandro Griza, The mechanical behavior of TiNbSn alloys according to alloying contents, cold rolling and aging, Journal of the Mechanical Behavior of Biomedical Materials, Volume 75, 2017, Pages 33-40.
DOI: 10.1016/j.jmbbm.2017.07.002
Google Scholar
[10]
Cristyane Silva Santos de Oliveira, Sandro Griza, Marize Varella de Oliveira, Alexandre Antunes Ribeiro, Mônica Barreto Leite, Study of the porous Ti35Nb alloy processing parameters for implant applications, Powder Technology, Volume 281, 2015, Pages 91-98.
DOI: 10.1016/j.powtec.2015.03.014
Google Scholar
[11]
Cristyane Silva Santos de Oliveira, Alexandre Antunes Ribeiro, Alexandre Antunes Ribeiro, Roseli Marins Balestra, Sandro Griza, Marize Varella de Oliveira, Characterization of Porous Ti-35Nb Alloy Sintered at Different Temperatures for Implant Applications, Materials Science Forum, 2014, v. 802, pp.496-500.
DOI: 10.4028/www.scientific.net/msf.802.496
Google Scholar
[12]
N.Masahashia, Y.Mori, H.Tanaka, A.Kogure, H.Inoue, K.Ohmura, Y.Kodama, M.Nishijima, E.Itoi, S.Hanada, Bioactive TiNbSn alloy prepared by anodization in sulfuric acid electrolytes, Materials Science and Engineering: C, Volume 98, May 2019, Pages 753-763.
DOI: 10.1016/j.msec.2019.01.033
Google Scholar
[13]
S. Griza, D. H. G. d. S. Sá, W. W. Batista, J. C. G. d. Blas e L. C. Pereira, Microstructure and mechanical properties of hot rolled TiNbSn alloys,, Materials and Design, vol. 56, pp.200-208, (2014).
DOI: 10.1016/j.matdes.2013.10.067
Google Scholar
[14]
D. H. Ping, C. Y. Cui, F. X. Yin e Y. T. Yamabe-Mitarai, Investigation on martensite in a Ti-Nb-Based shape memory alloy,, Scripta Materialia, vol. 54, pp.1305-1310, (2006).
DOI: 10.1016/j.scriptamat.2005.12.022
Google Scholar
[15]
P. Laheurte, F. Prima, A. Eberhardt, T. Gloriant, M. Wary e E. Patoor, Mechanical properties of low modulus β titanium alloys designed from the electronic approach,, Journal of the Mechanical Behavior of Biomedical Materials , vol. 3, pp.565-573, (2010).
DOI: 10.1016/j.jmbbm.2010.07.001
Google Scholar
[16]
T. Ozaki, H. Matsumoto, S. Watanabe e S. Hanada, Beta Ti Alloys with Low Young's Modulus,, Materials Transaction, vol. 45, nº 8, pp.2776-2779, (2004).
DOI: 10.2320/matertrans.45.2776
Google Scholar
[17]
C. A. F. Salvador, E. S. N. Lopes, C. A. Ospina e R. Caram, Orthorhombic martensite formation upon aging in a Ti-30Nb-4Sn alloy,, Materials Chemistry and Physics, vol. 183, pp.238-246, (2016).
DOI: 10.1016/j.matchemphys.2016.08.023
Google Scholar
[18]
H. Matsumoto, S. Watanabe e S. Hanada, Beta TiNbSn alloys with low young's modulus and high strength,, Materials Transactions, vol. 46, pp.1070-1078, (2005).
DOI: 10.2320/matertrans.46.1070
Google Scholar
[19]
H. Matsumoto, S. Watanabe e S. Hanada, Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated,, Journal of Alloys and Compounds, vol. 439, pp.145-155, (2007).
DOI: 10.1016/j.jallcom.2006.08.267
Google Scholar
[20]
Taek-Kyun Junga, Hyo-Soo Lee, Satoshi Semboshi, Naoya Masahashi, Tadasu Abumiya, Shuji Hanada, A new concept of hip joint stem and its fabrication using metastable TiNbSn alloy, Journal of Alloys and Compounds 536S (2012) S582–S585.
DOI: 10.1016/j.jallcom.2011.12.077
Google Scholar
[21]
Qu, W.T.; Sun, X.G.; Yuan, B.F.; Xiong, C.Y.; Zhang, F.; Li, Y.; Sun, B.H. Microstructures and phase transformations of Ti–30Zr–xNb (x = 5, 7, 9, 13 at.%) shape memory alloys. Materials. Characterization. Vol. 122, p.1–5; (2016).
DOI: 10.1016/j.matchar.2016.10.019
Google Scholar
[22]
G. R. Li, J. F. Cheng, H. M. Wang e C. Q. Li, The influence of cryogenic-aging circular treatment on the microstructure and properties of aluminum matrix composites,, Journal of Alloys and Compounds, vol. 695, pp.1930-1945, (2017).
DOI: 10.1016/j.jallcom.2016.11.028
Google Scholar
[23]
H. Li, W. Tong, J. Cui, L. Chen e L. Zuo, The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel,, Materials Science and Engineering: A, vol. 662, pp.356-362, (2016).
DOI: 10.1016/j.msea.2016.03.039
Google Scholar
[24]
S. Kumar, A. Batish, R. Singh e T. Singh, Machining performance of cryogenically treated Ti–5Al–2.5Sn titanium alloy in electric discharge machining: A comparative study,, Journal of Mechanical Engineering Science, (2016).
DOI: 10.1177/0954406215628030
Google Scholar
[25]
L. Y. Xu, J. Zhu, H. Y. Jing, L. Zhao, X. Q. Lv e Y. D. Han, Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti–6Al–4V joints,, Materials Science and Engineering: A, vol. 673, pp.503-510, (2016).
DOI: 10.1016/j.msea.2016.07.101
Google Scholar
[26]
L. Y. Xu, J. Zhu, H. Y. Jing, X. Q. Lv e Y. D. Han, Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti-6Al-4V joints,, Materials Science & Engineering A, vol. 673, pp.503-510, (2016).
DOI: 10.1016/j.msea.2016.07.101
Google Scholar
[27]
T. S. Vinothkumar, D. Kandaswamy, G. Prabhakaran e A. Rajadurai, Microstructure of cryogenically treated martensitic shape memory nickel-titanium alloy,, Journal of Conservative Dentistry, vol. 18, pp.292-296, (2015).
DOI: 10.4103/0972-0707.159727
Google Scholar
[28]
A. Helth, S. Pilz, T. Kirsten, L. Giebeler, J. Freudenberger, M. Calin, J. Eckert e A. Gebert, Effect of thermomechanical processing on the mechanical biofunctionality of a low modulus Ti-40Nb alloy,, Journal of the Mechanical Behavior of Biomedical Materials., vol. 65, pp.137-150, (2017).
DOI: 10.1016/j.jmbbm.2016.08.017
Google Scholar
[29]
K. Gu, J. Wang e Y. Zhou, Effect of cryogenic treatment on wear resistance of Ti–6Al–4V alloy for biomedical applications,, journal of the mechanical behavior of biomedical materials, vol. 30, pp.131-139, (2014).
DOI: 10.1016/j.jmbbm.2013.11.003
Google Scholar