[1]
B. Elsener, L. Zimmermann, L.H. Böhni, Non destructive determination of the free chloride content in cement based materials. Materials and Corrosion. 54 (2003) 440-446.
DOI: 10.1002/maco.200390095
Google Scholar
[2]
M. Montemor, A. M.P. Simoes, M.G.S. Ferreira, Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques, Cement and Concrete Composites. 25 (2003) 491-502.
DOI: 10.1016/s0958-9465(02)00089-6
Google Scholar
[3]
C. Andrade, C. Alonso, On-site measurements of corrosion rate of reinforcements. Construction and building materials. 15 (2001) 141-145.
DOI: 10.1016/s0950-0618(00)00063-5
Google Scholar
[4]
K.Y. Ann, H.W. Song, Chloride threshold level for corrosion of steel in concrete, Corrosion science. 49 (2007) 4113-4133.
DOI: 10.1016/j.corsci.2007.05.007
Google Scholar
[5]
T. Vidal, A. Castel, R. Francois, Analyzing crack width to predict corrosion in reinforced concrete, Cement and concrete research. 34 (2004) 165-174.
DOI: 10.1016/s0008-8846(03)00246-1
Google Scholar
[6]
http://insights.globalspec.com/article/2340/annual-global-cost-of-corrosion-2-5-trillion.
Google Scholar
[7]
J. Hugenschmidt, R. Mastrangelo, GPR inspection of concrete bridges, Cement and Concrete Composites. 28 (2006) 384-392.
DOI: 10.1016/j.cemconcomp.2006.02.016
Google Scholar
[8]
O. Büyüköztürk, Imaging of concrete structures, Ndt & E International. 31 (1998) 233-243.
Google Scholar
[9]
A. Zaki, H. Chai, D. Aggelis, N. Alver, Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique, Sensors. 15 (2015) 19069-19101.
DOI: 10.3390/s150819069
Google Scholar
[10]
N.J. Carino, M. Sansalone, N.N. Hsu, Flaw detection in concrete by frequency spectrum analysis of impact-echo waveforms, International advances in nondestructive testing. 12 (1986): 117-146.
Google Scholar
[11]
K. Šamárková, Z. Chobola, and D. Štefková, The corrosion status of reinforced concrete structure monitoring by impact-echo method, In Advanced Materials Research. 875 (2014) 445-449.
DOI: 10.4028/www.scientific.net/amr.875-877.445
Google Scholar
[12]
K. Šamárková, Z. Chobola, and D. Štefková, Using of impact-echo methods to assessment of reinforced concrete structures corrosion. In Applied Mechanics and Materials. Trans Tech Publications, 2014, pp.1400-1404.
DOI: 10.4028/www.scientific.net/amm.446-447.1400
Google Scholar
[13]
K. Šamárková, Z. Chobola, D. Štefková, I. Kusák, Impact-echo methods to assessment corrosion of reinforced concrete structures, In Applied Mechanics and Materials, vol. 627, Trans Tech Publications, 2014, pp.268-271.
DOI: 10.4028/www.scientific.net/amm.627.268
Google Scholar
[14]
W.F. Tawhed, S.L. Gassman, Damage assessment of concrete bridge decks using impact-echo method, Materials Journal. 99(2002) 273-281.
DOI: 10.14359/11973
Google Scholar
[15]
D. G. Aggelis, T. Shiotani, K. Kasai, Evaluation of grouting in tunnel lining using impact-echo, Tunnelling and Underground Space Technology. 23(6) (2008) 629-637.
DOI: 10.1016/j.tust.2007.12.001
Google Scholar
[16]
B.J. Jaeger, M.J. Sansalone, R.W. Poston, Detecting voids in grouted tendon ducts of post-tensioned concrete structures using the impact-echo method, Structural Journal. 93(4) (1996) 462-473.
DOI: 10.14359/9705
Google Scholar
[17]
Y. Lin, M. Sansolone, Detecting flaws in concrete beams and columns using the impact-echo method, Materials Journal. 89(4) (1992) 394-405.
DOI: 10.14359/2579
Google Scholar
[18]
N. J. Carino, The impact-echo method: an overview, Structures 2001: A Structural Engineering Odyssey. 2001, pp.1-18.
Google Scholar
[19]
Y.F. Lin, Y. Lin, B.Y. Tsai, Evaluating bond quality at interface between reinforcing bars and concrete using impact-echo method, Materials Journal 101.2 (2004) 154-161.
DOI: 10.14359/13064
Google Scholar
[20]
British Standards Institution. BS EN: 197-1: 2011, Cement, Composition, Specifications and Conformity Criteria for Common Cements. B.S.I. (2011).
Google Scholar
[21]
British Standards Institution. BS EN: 934-2; 2009, Admixtures for Concrete, Mortar and Grout-Part 2: Concrete Admixtures; Definitions, Requirements, Conformity, Marking and Labelling. B.S.I. (2009).
DOI: 10.3403/30180270
Google Scholar
[22]
British Standards Institution. BS 4449: 2005, Steel for the reinforcement of concrete—Weldable reinforcing steel—Bar, coil and decoiled product—Specification. (2005).
DOI: 10.3403/30109892
Google Scholar
[23]
H. Yalciner, O. Eren, S. Sensoy, An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level, Cement and Concrete Research. 42(5) (2012) 643-655.
DOI: 10.1016/j.cemconres.2012.01.003
Google Scholar
[24]
E. P. Kearsley, A. Joyce, Effect of corrosion products on bond strength and flexural behaviour of reinforced concrete slabs, Journal of the South African Institution of Civil Engineering. 56(2) (2014) 21-29.
Google Scholar
[25]
S. Bhaskar, B.H. Bharatkumar, G. Ravindra, M. Neelamegam, Effect of corrosion on the bond behavior of OPC and PPC concrete, J Struct Eng. 37 (2010) 37-42.
Google Scholar
[26]
Standard, A. S. T. M, Standard practice for preparing, cleaning, and evaluating corrosion test specimens, American Society for Testing and Materials G1-03 (2011).
Google Scholar
[27]
T. El Maaddawy, A. Chahrour, K. Soudki, Effect of fiber-reinforced polymer wraps on corrosion activity and concrete cracking in chloride-contaminated concrete cylinders, Journal of Composites for Construction. 10(2) (2006) 139-147.
DOI: 10.1061/(asce)1090-0268(2006)10:2(139)
Google Scholar
[28]
M. Sansalone, N.J. Carino, Impact-echo method, Concrete International. 10(4) (1988) 38-46.
Google Scholar
[29]
M. Ohtsu, F.A. Uddin, Mechanisms of corrosion-induced cracks in concrete at meso-and macro-scales, Journal of Advanced Concrete Technology. (6) 3 (2008) 419-429.
DOI: 10.3151/jact.6.419
Google Scholar
[30]
F. Schubert, B. Köhler, Ten lectures on impact-echo. Journal of Nondestructive Evaluation, 27(1-3) (2008), 5-21.
Google Scholar
[31]
M.T. Liang, P. J. Su, Detection of the corrosion damage of rebar in concrete using impact-echo method. Cement and Concrete research, 31(10) (2001), 1427-1436.
DOI: 10.1016/s0008-8846(01)00569-5
Google Scholar
[32]
T.A. Söylev, M.G. Richardson, Corrosion inhibitors for steel in concrete: State-of-the-art report. Construction and Building Materials. 22(4) (2008) 609-622.
DOI: 10.1016/j.conbuildmat.2006.10.013
Google Scholar
[33]
T.H. Miller, Nondestructive inspection of corrosion and delamination at the concrete-steel reinforcement interface, (2010).
Google Scholar
[34]
M. S. El-Feky, M. Serag, A. Yasien., H. Elkady, Bond strength of nano silica concrete subjected to corrosive environments. ARPN Journal of Engineering and Applied Sciences, 11(23) (2016), 13909-13924.
Google Scholar
[35]
F.U. Shaikh, S.U Supit, Chloride induced corrosion durability of high volume fly ash concretes containing nano particles. Construction and building materials 99 (2015): 208-225.
DOI: 10.1016/j.conbuildmat.2015.09.030
Google Scholar
[36]
A. Al-Harthy, M. Stewart, J. Mullard, Concrete cover cracking caused by steel reinforcement corrosion. Magazine of Concrete Research 63.9 (2011), 655-667.
DOI: 10.1680/macr.2011.63.9.655
Google Scholar
[37]
K. Ann, H. Moon, Y. Kim, J. Ryou, Durability of recycled aggregate concrete using pozzolanic materials. Waste Management 28.6 (2008): 993-999.
DOI: 10.1016/j.wasman.2007.03.003
Google Scholar
[38]
P. Shokouhi, Comprehensive evaluation of concrete bridge decks using impact echo. Rutgers The State University of New Jersey-New Brunswick, (2006).
Google Scholar
[39]
D. Aggelis, T. Shiotani, K. Kasai., Evaluation of grouting in tunnel lining using impact-echo. Tunnelling and Underground Space Technology, 23(6) 2008: 629-637.
DOI: 10.1016/j.tust.2007.12.001
Google Scholar