[1]
Babita Sharma, S.K. Sharma, Shipra Mital Gupta, Preparation and evaluation of stable nanofluids for heat transfer application: A review, Exp. Therm. Fluid Sci. 79 (2016) 202-212.
DOI: 10.1016/j.expthermflusci.2016.06.029
Google Scholar
[2]
U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In: D.A Siginer and H. P. Wang, eds., Developments and applications of non-Newtonian flows, ASME, New York, 66 (1995) 99–105.
Google Scholar
[3]
M.J.P. Gallego, L. Lugo, J.L. Legido, M.M. Pineiro, Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids, Nanoscale Res. Lett. 6 (2011) 1-11. DOI : 10.1186/1556-276X-6-221.
DOI: 10.1186/1556-276x-6-221
Google Scholar
[4]
H. Q.Xie, J.C. Wang, T. G.Xi, Y. Liu, F. Ai, Q.R. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, Appl. Phys. 91 (2002) 4568-4572.
DOI: 10.1063/1.1454184
Google Scholar
[5]
A. Alirezaie, M. Hadi Hajmohammad, M. Reza Hassani Ahangar, M. Hemmat Esfe, Price- Performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes, Appl. Therm. Eng. 128 (2018) 373-380.
DOI: 10.1016/j.applthermaleng.2017.08.143
Google Scholar
[6]
D. Dhinesh Kumar, A. Valan Arasu, A review on preparation, characterization, properties and applications of nanofluids, Renew. Sustain. Energy Rev. 60 (2016) 21-40.
DOI: 10.1016/j.rser.2016.01.055
Google Scholar
[7]
Y.M. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow 21 (2000) 58-64.
DOI: 10.1016/s0142-727x(99)00067-3
Google Scholar
[8]
B.X. Wang, L.P. Zhou, X.F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transf. 46 (2003) 2665-2672.
DOI: 10.1016/s0017-9310(03)00016-4
Google Scholar
[9]
H. Xie, M. Fujii, X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, Int. J. Heat Mass Transf. 48 (2005) 2926-2932. DOI : 10.1016/j.ijheatmasstransfer.2004.10.040.
DOI: 10.1016/j.ijheatmasstransfer.2004.10.040
Google Scholar
[10]
C.T. Nguyen, F. Desgranges, N.Galanis, G. Roy, T. Maré, S. Boucher, H. Angue, Viscosity data for Al2O3–water nanofluid–hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci. 47 (2008) 103-111. DOI : 10.1016/j.ijthermalsci.2007.01.033.
DOI: 10.1016/j.ijthermalsci.2007.01.033
Google Scholar
[11]
K. Khanafer, K. Vafai, M. Lightstone, Buoyancy driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transf. 46 (2003) 3639-3653.
DOI: 10.1016/s0017-9310(03)00156-x
Google Scholar
[12]
M. Shahi, A.H. Mahmoudi, F. Talebi, Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid, Int. Commun. Heat Mass Transf. 37 (2010) 201-213.
DOI: 10.1016/j.icheatmasstransfer.2009.10.002
Google Scholar
[13]
F. Talebi, A.H. Mahmoudi, M. Shahi, Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid, Int. Commun. Heat Mass Transf. 37 (2010) 79-90.
DOI: 10.1016/j.icheatmasstransfer.2009.08.013
Google Scholar
[14]
A. Behzadmehr, M. Saffar-Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. Heat Fluid Flow 28 (2007) 211-219.
DOI: 10.1016/j.ijheatfluidflow.2006.04.006
Google Scholar
[15]
S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al2O3–Cu/ water hybrid nanofluid in heat transfer, Exp. Therm. Fluid Sci. 38 (2012) 54-60.
DOI: 10.1016/j.expthermflusci.2011.11.007
Google Scholar
[16]
M. Baghbanzadeh, A. Rashidi, D. Rashtchian, R. Lotfi, A. Amrollahi, Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids, Thermochim. Acta 549 (2012) 87-94.
DOI: 10.1016/j.tca.2012.09.006
Google Scholar
[17]
S.M. Abbasi, A. Rashidi, A. Nemati K. Arzani, The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina, Ceram. Int. 39 (2013) 3885-3891.
DOI: 10.1016/j.ceramint.2012.10.232
Google Scholar
[18]
Munish Gupta, Vinay Singh, Zafar Said, Heat transfer analysis using Zinc Ferrite/water (Hybrid) nanofluids in a circular tube: An experimental investigation and development of new correlations for thermophysical and heat transfer properties, Sustainable Energy Technologies and Assessments 39 (2020), 100720.
DOI: 10.1016/j.seta.2020.100720
Google Scholar
[19]
Zafar Said, Mokhtar Ghodbane, L. Syam Sundar, Arun Kumar Tiwari, Mohsen Sheikholeslami, Boussad Boumeddane, Heat transfer, entropy generation, economic and environmental analyses of linear fresnel reflector using novel rGO-Co3O4 hybrid nanofluid, Renewable Energy 165, Part 1 (2021) 420-437.
DOI: 10.1016/j.renene.2020.11.054
Google Scholar
[20]
S.S.M. Ajarostaghi, M. Zaboli, M. Nourbakhsh, Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator, J. Therm Anal Calorim 143 (2021) 1583-1597.
DOI: 10.1007/s10973-020-10205-z
Google Scholar
[21]
G. Roy, C.T. Nguyen, P.R. Lajoie, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattice. Microst. 35 (2004) 497-511.
DOI: 10.1016/j.spmi.2003.09.011
Google Scholar
[22]
S.M. Aminossadati, B. Ghasemi, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, Eur. J. Mech. B Fluids 28 (2009) 630-640.
DOI: 10.1016/j.euromechflu.2009.05.006
Google Scholar
[23]
M.A. Mansour, R.A. Mohamed, M.M. Abd-elaziz, S.E. Ahmed, Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid, Int. Commun. Heat Mass Transf. 37 (2010) 1504-1512.
DOI: 10.1016/j.icheatmasstransfer.2010.09.004
Google Scholar
[24]
T. Basak, A.J. Chamkha, Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions, Int. J. Heat Mass Transf. 55 (2012) 5526-5543.
DOI: 10.1016/j.ijheatmasstransfer.2012.05.025
Google Scholar
[25]
R. Nasrin, M.A. Alim, Free convective flow of nanofluid having two nanoparticles inside a complicated cavity, Int. J. Heat Mass Transf. 63 (2013) 191-198.
DOI: 10.1016/j.ijheatmasstransfer.2013.03.068
Google Scholar
[26]
B. Takabi, H. Shokouhmand, Effects of Al2O3–Cu/water hybrid nanofuid on heat transfer and flow characteristics in turbulent regime, Int. J. Mod. Phys.C 26 (2015) 1550047 (25 pages).
DOI: 10.1142/s0129183115500473
Google Scholar
[27]
G. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech. 83 (1977) 97-117.
DOI: 10.1017/s0022112077001062
Google Scholar
[28]
S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington DC, (1980).
Google Scholar
[29]
G. De Vahl Davis, Natural convection of air in a square cavity, a benchmark numerical solution, Int. J. Numer. Methods Fluids 3 (1962) 249-264. DOI : 10.1002/fld.1650030305.
DOI: 10.1002/fld.1650030305
Google Scholar
[30]
T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk, A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure, Int. J. heat Heat Mass Transf. 34 (1991) 1543-1557.
DOI: 10.1016/0017-9310(91)90295-p
Google Scholar
[31]
E. Abu-Nada, Rayleigh-Bénard convection in nanofluids: Effect of temperature dependent properties, Int. J. Therm. Sci. 50 (2011) 1720-1730.
DOI: 10.1016/j.ijthermalsci.2011.04.003
Google Scholar
[32]
E. Abu-Nada, A.J. Chamkha, Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid, Int. J. Therm. Sci. 49 (2010) 2339-2352.
DOI: 10.1016/j.ijthermalsci.2010.07.006
Google Scholar
[33]
G.A. Sheikhzadeh, A. Arefmanesh, M.H. Kheirkhah, R. Abdollahi, Natural convection of Cu–water nanofluid in a cavity with partially active side walls, Eur. J. Mech. B Fluids 30 (2011) 166-176.
DOI: 10.1016/j.euromechflu.2010.10.003
Google Scholar
[34]
M.M. Ghosh, S. Ghosh, S.K. Pabi, Effects of particle shape and fluid temperature on heat-transfer characteristics of nanofluids, J. Mater. Eng. Perform. 22 (2012) 1525-1529.
DOI: 10.1007/s11665-012-0441-7
Google Scholar
[35]
N.A. Che Sidik, H.A. Mohammed, O.A. Alawi, S. Samion, A review on preparation methods and challenges of nanofluids, Int. Commun. Heat Mass Transf. 54 (2014) 115-125.
DOI: 10.1016/j.icheatmasstransfer.2014.03.002
Google Scholar