Heat Transfer Enhancement of Water Based Al2O3- Cu Hybrid Nanofluid Trough Square Cavity

Article Preview

Abstract:

The present numerical work, based on the finite volume method, deals with the characterization of natural convective flow and thermal fields inside differentially vertical heated square cavities filled with a nanofluid as well as the quantification of the convective exchanges. The investigation is devoted to study the influence of the hybrid nanofluid (Al2O3-Cu / water) on the flow’s general structure with a particular attention to the Nusselt number. An exhaustive parametric study is conducted considering different combinations of Al2O3 and Cu nanoparticles (NPs) dispersed in water for a range of Rayleigh numbers (Ra) and total volume fractions An appropriate agreement with experimental data was observed for the estimation of the hybrid nanofluid thermal conductivity. From the results, it is observed that the heat transfer intensifies by increasing the Ra number and the nanoparticles volume fraction. The hybrid nanofluid seems to be the most efficient nanofluid in comparison with a base fluid and a single nanofluid. This heat transfer enhancement becomes more convincing with the increase of the Cu NPs content (% in volume).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-100

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Babita Sharma, S.K. Sharma, Shipra Mital Gupta, Preparation and evaluation of stable nanofluids for heat transfer application: A review, Exp. Therm. Fluid Sci. 79 (2016) 202-212.

DOI: 10.1016/j.expthermflusci.2016.06.029

Google Scholar

[2] U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In: D.A Siginer and H. P. Wang, eds., Developments and applications of non-Newtonian flows, ASME, New York, 66 (1995) 99–105.

Google Scholar

[3] M.J.P. Gallego, L. Lugo, J.L. Legido, M.M. Pineiro, Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids, Nanoscale Res. Lett. 6 (2011) 1-11. DOI : 10.1186/1556-276X-6-221.

DOI: 10.1186/1556-276x-6-221

Google Scholar

[4] H. Q.Xie, J.C. Wang, T. G.Xi, Y. Liu, F. Ai, Q.R. Wu, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, Appl. Phys. 91 (2002) 4568-4572.

DOI: 10.1063/1.1454184

Google Scholar

[5] A. Alirezaie, M. Hadi Hajmohammad, M. Reza Hassani Ahangar, M. Hemmat Esfe, Price- Performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes, Appl. Therm. Eng. 128 (2018) 373-380.

DOI: 10.1016/j.applthermaleng.2017.08.143

Google Scholar

[6] D. Dhinesh Kumar, A. Valan Arasu, A review on preparation, characterization, properties and applications of nanofluids, Renew. Sustain. Energy Rev. 60 (2016) 21-40.

DOI: 10.1016/j.rser.2016.01.055

Google Scholar

[7] Y.M. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow 21 (2000) 58-64.

DOI: 10.1016/s0142-727x(99)00067-3

Google Scholar

[8] B.X. Wang, L.P. Zhou, X.F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transf. 46 (2003) 2665-2672.

DOI: 10.1016/s0017-9310(03)00016-4

Google Scholar

[9] H. Xie, M. Fujii, X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, Int. J. Heat Mass Transf. 48 (2005) 2926-2932. DOI : 10.1016/j.ijheatmasstransfer.2004.10.040.

DOI: 10.1016/j.ijheatmasstransfer.2004.10.040

Google Scholar

[10] C.T. Nguyen, F. Desgranges, N.Galanis, G. Roy, T. Maré, S. Boucher, H. Angue, Viscosity data for Al2O3–water nanofluid–hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci. 47 (2008) 103-111. DOI : 10.1016/j.ijthermalsci.2007.01.033.

DOI: 10.1016/j.ijthermalsci.2007.01.033

Google Scholar

[11] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transf. 46 (2003) 3639-3653.

DOI: 10.1016/s0017-9310(03)00156-x

Google Scholar

[12] M. Shahi, A.H. Mahmoudi, F. Talebi, Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid, Int. Commun. Heat Mass Transf. 37 (2010) 201-213.

DOI: 10.1016/j.icheatmasstransfer.2009.10.002

Google Scholar

[13] F. Talebi, A.H. Mahmoudi, M. Shahi, Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid, Int. Commun. Heat Mass Transf. 37 (2010) 79-90.

DOI: 10.1016/j.icheatmasstransfer.2009.08.013

Google Scholar

[14] A. Behzadmehr, M. Saffar-Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. Heat Fluid Flow 28 (2007) 211-219.

DOI: 10.1016/j.ijheatfluidflow.2006.04.006

Google Scholar

[15] S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al2O3–Cu/ water hybrid nanofluid in heat transfer, Exp. Therm. Fluid Sci. 38 (2012) 54-60.

DOI: 10.1016/j.expthermflusci.2011.11.007

Google Scholar

[16] M. Baghbanzadeh, A. Rashidi, D. Rashtchian, R. Lotfi, A. Amrollahi, Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids, Thermochim. Acta 549 (2012) 87-94.

DOI: 10.1016/j.tca.2012.09.006

Google Scholar

[17] S.M. Abbasi, A. Rashidi, A. Nemati K. Arzani, The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina, Ceram. Int. 39 (2013) 3885-3891.

DOI: 10.1016/j.ceramint.2012.10.232

Google Scholar

[18] Munish Gupta, Vinay Singh, Zafar Said, Heat transfer analysis using Zinc Ferrite/water (Hybrid) nanofluids in a circular tube: An experimental investigation and development of new correlations for thermophysical and heat transfer properties, Sustainable Energy Technologies and Assessments 39 (2020), 100720.

DOI: 10.1016/j.seta.2020.100720

Google Scholar

[19] Zafar Said, Mokhtar Ghodbane, L. Syam Sundar, Arun Kumar Tiwari, Mohsen Sheikholeslami, Boussad Boumeddane, Heat transfer, entropy generation, economic and environmental analyses of linear fresnel reflector using novel rGO-Co3O4 hybrid nanofluid, Renewable Energy 165, Part 1 (2021) 420-437.

DOI: 10.1016/j.renene.2020.11.054

Google Scholar

[20] S.S.M. Ajarostaghi, M. Zaboli, M. Nourbakhsh, Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator, J. Therm Anal Calorim 143 (2021) 1583-1597.

DOI: 10.1007/s10973-020-10205-z

Google Scholar

[21] G. Roy, C.T. Nguyen, P.R. Lajoie, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattice. Microst. 35 (2004) 497-511.

DOI: 10.1016/j.spmi.2003.09.011

Google Scholar

[22] S.M. Aminossadati, B. Ghasemi, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, Eur. J. Mech. B Fluids 28 (2009) 630-640.

DOI: 10.1016/j.euromechflu.2009.05.006

Google Scholar

[23] M.A. Mansour, R.A. Mohamed, M.M. Abd-elaziz, S.E. Ahmed, Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid, Int. Commun. Heat Mass Transf. 37 (2010) 1504-1512.

DOI: 10.1016/j.icheatmasstransfer.2010.09.004

Google Scholar

[24] T. Basak, A.J. Chamkha, Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions, Int. J. Heat Mass Transf. 55 (2012) 5526-5543.

DOI: 10.1016/j.ijheatmasstransfer.2012.05.025

Google Scholar

[25] R. Nasrin, M.A. Alim, Free convective flow of nanofluid having two nanoparticles inside a complicated cavity, Int. J. Heat Mass Transf. 63 (2013) 191-198.

DOI: 10.1016/j.ijheatmasstransfer.2013.03.068

Google Scholar

[26] B. Takabi, H. Shokouhmand, Effects of Al2O3–Cu/water hybrid nanofuid on heat transfer and flow characteristics in turbulent regime, Int. J. Mod. Phys.C 26 (2015) 1550047 (25 pages).

DOI: 10.1142/s0129183115500473

Google Scholar

[27] G. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech. 83 (1977) 97-117.

DOI: 10.1017/s0022112077001062

Google Scholar

[28] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere, Washington DC, (1980).

Google Scholar

[29] G. De Vahl Davis, Natural convection of air in a square cavity, a benchmark numerical solution, Int. J. Numer. Methods Fluids 3 (1962) 249-264. DOI : 10.1002/fld.1650030305.

DOI: 10.1002/fld.1650030305

Google Scholar

[30] T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk, A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure, Int. J. heat Heat Mass Transf. 34 (1991) 1543-1557.

DOI: 10.1016/0017-9310(91)90295-p

Google Scholar

[31] E. Abu-Nada, Rayleigh-Bénard convection in nanofluids: Effect of temperature dependent properties, Int. J. Therm. Sci. 50 (2011) 1720-1730.

DOI: 10.1016/j.ijthermalsci.2011.04.003

Google Scholar

[32] E. Abu-Nada, A.J. Chamkha, Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid, Int. J. Therm. Sci. 49 (2010) 2339-2352.

DOI: 10.1016/j.ijthermalsci.2010.07.006

Google Scholar

[33] G.A. Sheikhzadeh, A. Arefmanesh, M.H. Kheirkhah, R. Abdollahi, Natural convection of Cu–water nanofluid in a cavity with partially active side walls, Eur. J. Mech. B Fluids 30 (2011) 166-176.

DOI: 10.1016/j.euromechflu.2010.10.003

Google Scholar

[34] M.M. Ghosh, S. Ghosh, S.K. Pabi, Effects of particle shape and fluid temperature on heat-transfer characteristics of nanofluids, J. Mater. Eng. Perform. 22 (2012) 1525-1529.

DOI: 10.1007/s11665-012-0441-7

Google Scholar

[35] N.A. Che Sidik, H.A. Mohammed, O.A. Alawi, S. Samion, A review on preparation methods and challenges of nanofluids, Int. Commun. Heat Mass Transf. 54 (2014) 115-125.

DOI: 10.1016/j.icheatmasstransfer.2014.03.002

Google Scholar