[1]
S. C. Jain, T. Aernout, A. K. Kapoor, V. Kumar, W. Geens, J. Poortmans, R. Mertens, I –V characteristics of dark and illuminated PPV-PCBM blends solar cells, Synthetic Metals. 148 (2005) 245-250.
DOI: 10.1016/j.synthmet.2004.09.037
Google Scholar
[2]
S. Günes, H. Neugebauer, N. S. Sariciftci, Conjugated Polymer – Based Organic Solar Cells, Chem. Rev. 107 (2007) 1324-1338.
DOI: 10.1021/cr050149z
Google Scholar
[3]
S. R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature. 428, (2004) 911-918.
DOI: 10.1038/nature02498
Google Scholar
[4]
H. Sirringhaus, Device Physics of Solution-Processed Organic Field-Effect Transistors, Adv. Mater. 17 (2005) 2411-2425.
DOI: 10.1002/adma.200501152
Google Scholar
[5]
D. Wang, M. Fina, S. Kim, C. Zhang, T. Zhang, Y. Deng, K. Chen, L. Liang, S. S. Mao, A. M. Minor, G. Liu, Trap-Assisted Charge Injection into Large Bandgap Polymer Semiconductors, Materials. 12 (2019) 1-9.
DOI: 10.3390/ma12152427
Google Scholar
[6]
S. Gun Lee, R. Hattori, Current Density Equations Representing the Transition between the Injection- and Bulk-limited Currents for Organic Semiconductors, Journal of Information Display. 10 (2009) 143-148.
DOI: 10.1080/15980316.2009.9652098
Google Scholar
[7]
J. Zhang, J. Wang, H. Wang, D. Yan, Organic thin-film transistors in sandwich configuration, Appl. Phys. Lett. 84 (2004) 142-144.
DOI: 10.1063/1.1638634
Google Scholar
[8]
D. Kolosov, D. S. English, V. Bulovic, P. F. Barbara, S. R. Forrest, M. E. Thompson, Direct observation of structural changes in organic light emitting devices, J. Appl. Phys. 90 (2001) 3242-3247.
DOI: 10.1063/1.1389760
Google Scholar
[9]
A. K. Mahapatro, S. Ghosh, Charge carrier transport in metal phthalocyanine based disordered thin films, J. Appl. Phys. 101 (2007) 1-5.
DOI: 10.1063/1.2434946
Google Scholar
[10]
S. C. Kim, G. B. Lee, M.-W. Choi, Y. Roh, C. N. Whang, K. Jeong, J. -G. Lee, S. Kim, Controlling hole injection in organic electroluminescent device by sputter-grown Cu-phthalocyanine thin films, Appl. Phys. Lett. 78 (2001) 1445 -1447.
DOI: 10.1063/1.1351842
Google Scholar
[11]
A. K. Mahapatro, S. Ghosh, Schottky energy barrier and charge injection in metal/copper–phthalocyanine/metal structures, Appl. Phys. Lett. 80 (2002) 4840-4842.
DOI: 10.1063/1.1483388
Google Scholar
[12]
S. W. Cho, L. F. J. Piper, A. De Masi, A. R. H. Preston, K. E. Smith, K. V. Chauhan, P. Sullivan, R. A. Hatton, T. S. Jones, Electronic Structure of C60/Phthalocyanine/ITO Interfaces Studied using Soft X-ray Spectroscopies, J. Phys. Chem. C. 114 (2010) 1928–(1933).
DOI: 10.1021/jp910504a
Google Scholar
[13]
M.C. Staniford, M.M. Lezhnina, U.H. Kynast, Phthalocyanine blue in aqueous solutions, RSC Adv. 5 (2015) 3974-3977.
DOI: 10.1039/c4ra11139g
Google Scholar
[14]
S. Sen, N. B. Manik, Effect of Fullerene Nanoparticles on Barrier Height of Crystal Violet Dye Based Organic Device, IEEE Xplore. (2019) 1-6.
DOI: 10.1109/iementech48150.2019.8981122
Google Scholar
[15]
E. M. Speller, The significance of fullerene electron acceptors in organic solar cell photo-oxidation, Materials Science and Technology. 33 (2017) 924-933.
DOI: 10.1080/02670836.2016.1215840
Google Scholar
[16]
S. Sen, N. B. Manik, Modification of Trap Energy and Barrier Height in Crystal Violet (CV) Dye based Organic Device in Presence of Single Walled Carbon Nanotubes (SWCNT), International Journal of Scientific Research and Review. 07 (2019) 10-14.
DOI: 10.1007/s12648-020-01972-4
Google Scholar
[17]
H. Maktuff Jaber Al-Ta'ii, Y. Mohd Amin, V. Periasamy, Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation, Sensors. 15 (2015) 4810-4822.
DOI: 10.3390/s150304810
Google Scholar
[18]
S. Sen, N.B. Manik, Effect of Carboxyl-Functionalized Single Walled Carbon Nanotubes on the Interfacial Barrier Height of Malachite Green Dye Based Organic Device, Physics International. 10 (2019) 1-7.
DOI: 10.3844/pisp.2019.1.7
Google Scholar
[19]
S. Sen, N. B. Manik, Effect of back electrode on trap energy and interfacial barrier height of crystal violet dye-based organic device, Bulletin of Materials Science. 43 (2020) 1-4.
DOI: 10.1007/s12034-020-2047-2
Google Scholar
[20]
S. Sen, N. B. Manik, Study on the Effect of 8 nm Size Multi Walled Carbon Nanotubes (MWCNT) on the Barrier Height of Malachite Green (MG) Dye Based Organic Device, International Journal of Advanced Science and Engineering. 6 (2020) 23-27.
DOI: 10.29294/ijase.6.s2.2020.23-27
Google Scholar
[21]
M. Yildirim, Determination of Contact Parameters of Au/n-Ge Schottky Barrier Diode with Rubrene Interlayer, Journal of Polytechnic. 20 (2017) 165-173.
Google Scholar
[22]
S. Sen, N. B. Manik, Effect of Zinc Oxide (ZnO) Nanoparticles on Interfacial Barrier Height and Band Bending of Phenosafranin (PSF) Dye-Based Organic Device, Journal of Electronic Materials. 49 (2020) 4647- 4652.
DOI: 10.1007/s11664-020-08202-x
Google Scholar
[23]
H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance, J. Appl. Phys. 50 (1979) 5052-5053.
DOI: 10.1063/1.325607
Google Scholar
[24]
F. Yakuphnoglu, M. Shah, W. A. Farooq, Electrical and Interfacial Properties of p- Si/P3HT Organic Junction Barrier, Acta Physica Polonica A. 120 (2011) 558-562.
DOI: 10.12693/aphyspola.120.558
Google Scholar
[25]
A. Kocyigit, M. Yılmaz, S. Aydoğan , Ü. Incekara, The effect of measurements and layer coating homogeneity of AB on the Al/AB/p-Si devices, Journal of Alloys and Compounds. 790 (2019) 388-396.
DOI: 10.1016/j.jallcom.2019.03.179
Google Scholar
[26]
A. Türüt, Determination of barrier height temperature coefficient by Norde's method in ideal Co/n-GaAs Schottky contacts, Turk J Phys. 36 (2012) 235-244.
DOI: 10.3906/fiz-1103-8
Google Scholar
[27]
O. Güllü, A. Türüt, Electronic parameters of MIS Schottky diodes with DNA biopolymer interlayer, Materials Science-Poland. 33 (2015) 593-600.
DOI: 10.1515/msp-2015-0089
Google Scholar
[28]
H. Tanrıkulu, A. Tataroğlu, E. E. Tanrıkulu, A. Büyükbaş Uluşan, Electrical characterization of MIS diode prepared by magnetron sputtering, Indian Journal of Pure & Applied Physics. 56 (2018) 142-148.
Google Scholar
[29]
C. Venkata Prasad, V. Rajagopal Reddy, Chel-Jong Choi, Electrical and carrier transport properties of the Au/Y2O3/n-GaN metal-insulator-semiconductor (MIS) diode with rare-earth oxide interlayer, Appl. Phys. A. 123 (2017) 1-10.
DOI: 10.1007/s00339-017-0894-5
Google Scholar
[30]
J. M. Dhimmar, H. N. Desai, B.P. Modi, The Effect of Interface States Density Distribution and Series Resistance on Electrical Behaviour of Schottky Diode, Materials Today: Proceedings. 3 (2016) 1658–1665.
DOI: 10.1016/j.matpr.2016.04.056
Google Scholar
[31]
V. Rajagopal Reddy, L. Dasaradha Rao, V. Janardhanam, Min-Sung Kang, Chel- Jong Choi, Electrical Properties and Interface States of Rare-Earth Metal Ytterbium Schottky Contacts to p-Type InP, Materials Transactions. 54 (2013) 2173-2179.
DOI: 10.2320/matertrans.m2013281
Google Scholar