[1]
A.A. Baker, R.J. Callinan, M.J. Davis, R. Jones, J.G. Williams, Repair of mirage aircraft using BFRP crack patching technology, Theor Appl Fract Mech. 2 (1984) 1-16.
DOI: 10.1016/0167-8442(84)90035-1
Google Scholar
[2]
A.A. Baker, Repair of cracked or defective metallic components with advanced fiber composites an overview of Australian work, Composite Structure. 2 (1984) 153-181.
DOI: 10.1016/0263-8223(84)90025-4
Google Scholar
[3]
A.A. Baker Fibre, composite repair of cracked metallic aircraft components-practical and basic aspect, Composites. 18(4) (1987) 293-308.
DOI: 10.1016/0010-4361(87)90293-x
Google Scholar
[4]
A.A. Baker, Bonded composite repair for fatigue-cracked primary aircraft structure, Compos Struct. 74 (1999) 431-43.
DOI: 10.1016/s0263-8223(00)00011-8
Google Scholar
[5]
S. Naboulsi, S. Mall, Methodology to analyze aerospace structures repaired with a bonded composite patch, J Strain Anal. 34(6) (1999) 395–412.
DOI: 10.1243/0309324991513849
Google Scholar
[6]
P. Kumar, P.S. Shinde, G. Bhoyar, Fracture toughness and shear strength of the bonded interface between an aluminium alloy skin and a FRP patch, Journal of The Institution of Engineers C. 100(5) (2019) 779-789.
DOI: 10.1007/s40032-018-0467-1
Google Scholar
[7]
Y.W. Kwon, B.L. Hall, Analyses of cracks in thick stiffened plates repaired with singlesided composite patch, Composite Structures. 119 (2015) 727-737.
DOI: 10.1016/j.compstruct.2014.09.052
Google Scholar
[8]
A. Rasane, P. Kumar, M.P. Khond, Optimizing the size of a CFRP patch to repair a crack in a thin sheet, The Journal of Adhesion. 93(13) (2017) 1064-1080.
DOI: 10.1080/00218464.2016.1204236
Google Scholar
[9]
M. Jamal-Omidi, M. Falah, D. Taherifar, 3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM, Struct Eng. Mech. 50(4) (2014) 525-539.
DOI: 10.12989/sem.2014.50.4.525
Google Scholar
[10]
J. Dai, P. Zhao, H. Su, Y. Wang, Mechanical Behavior of Single Patch Composite Repaired Al Alloy Plates: Experimental and Numerical Analysis, Materials. 13(2020) 2740.
DOI: 10.3390/ma13122740
Google Scholar
[11]
X. Liu, J. Wu, J. Xi, Z. Yu, Bonded Repair Optimization of Cracked Aluminum Alloy Plate by Microwave Cured Carbon‐ Aramid Fiber/Epoxy Sandwich Composite Patch, Materials. 12 (2019) 1655.
DOI: 10.3390/ma12101655
Google Scholar
[12]
A. Yousefi, M.M. Mashhadi, M. Safarabadi, Numerical analysis of cracked aluminum plate repaired with multi‐scale reinforcement composite patches, Journal of Composite Materials. (54) (2020) 4341-4357.
DOI: 10.1177/0021998320931177
Google Scholar
[13]
G. Tsai, S. Shen, Fatigue analysis of cracked thick aluminium plate bonded with composite patches, Composite Structures. 64(1) (2004) 79-90.
DOI: 10.1016/s0263-8223(03)00216-2
Google Scholar
[14]
S. Mohammadi, Parametric investigation of one-sided composite patch efficiency for repairing crack in mixed mode considering different thicknesses of the main plate, Journal of Composite Materials.54 (2020) 3067-3079.
DOI: 10.1177/0021998320909535
Google Scholar
[15]
A. Mahadesh Kumar, S.A. Hakeem, Optimum design of symmetric composite patch repair to centre cracked metallic sheet, Composite Structures. 49(3) (2000) 285-292.
DOI: 10.1016/s0263-8223(00)00005-2
Google Scholar
[16]
T. Haftka,V. Grandhi, Structural shape optimization—A survey, Computer Methods in Applied Mechanics and Engineering. 57(1986) 91-106.
DOI: 10.1016/0045-7825(86)90072-1
Google Scholar
[17]
K. Wieghardt, D. Hartmann, K.R. Leimbach, Interactive shape optimization of continuum structures, Engineering structures. 19(4) (1997) 325-331.
DOI: 10.1016/s0141-0296(96)00077-6
Google Scholar
[18]
R. Mhamdia, B. Serier, B. Bachir Bouiadjra, M. Belhouari, Comparison between double and single sided bonded composite repair with circular shape, Composites. B 43 (2012) 391-397.
DOI: 10.1016/j.compositesb.2011.08.047
Google Scholar
[19]
M. Ramji, R. Srilakshmi, M. Bhanu Prakash, Towards optimization of patch shape on the performance of bonded composite repair using FEM, Compos B Eng. 45(2013) 710-720.
DOI: 10.1016/j.compositesb.2012.07.049
Google Scholar
[20]
D.K. Kaddouri, B.Ouinas, B. Bachir Bouiadjra, FE analysis of the behaviour of octagonal bonded composite repair in aircraft structures, Comput Mater Sci. 43 (2008) 1109-1011.
DOI: 10.1016/j.commatsci.2008.03.003
Google Scholar
[21]
D. Ouinas, B. Bouiadjra, B.Serier, M. Said Bekkouche, Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge, Comput Struct. 80(4) (2007) 514-522.
DOI: 10.1016/j.compstruct.2006.07.005
Google Scholar
[22]
D. Ouinas, A. Hebbar, B. Bachir Bouiadjra, M. Belhouari, B.Serier, Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch, Compos Part B Eng. 40 (2009) 804–810.
DOI: 10.1016/j.compositesb.2009.06.002
Google Scholar
[23]
A. Albedah, B. Bachir Bouiadjra, R. Mhamdia, F Benyahia, Es-Saheb M, Comparison between double and single sided bonded composite repair with circular shape, Materials and Design. 32 (2011) 996-1000.
DOI: 10.1016/j.matdes.2010.08.022
Google Scholar
[24]
M.S. Bouchiba, B.Serier, New optimization method of patch shape to improve the effectiveness of cracked plates repair. Structural Engineering & Mechanics 58(2) (2016) 301-326.
DOI: 10.12989/sem.2016.58.2.301
Google Scholar
[25]
F. Benyahia, A. Albedaha, B.A. Bachir Bouiadjra, Elliptical and circular bonded composite repair under mechanical and thermal loading in aircraft structures, Materials Reseach. 17(2014) 1219-1225.
DOI: 10.1590/1516-1439.259613
Google Scholar
[26]
L. Aminallah, T. Achour, B. Bachir Bouiadjra, B. Serier, A. Amrouche, X. Feaugas, et al. Analysis of the distribution of thermal residual stresses in bonded composite repair of metallic aircraft structures. Computational Materials Science. 46(4) (2009) 1023-1027.
DOI: 10.1016/j.commatsci.2009.05.008
Google Scholar
[27]
A. Albedah, B. Bachir Bouiadjra, L. Aminallah, Numerical analysis of the effect of thermal residual stresses on the performances of bonded composite repairs in aircraft structures, Compos Part B Eng. 42 (2011) 511-516.
DOI: 10.1016/j.compositesb.2010.11.013
Google Scholar
[28]
R. Mhamdia, B. Bachir Bouadjra, B. Serier, Stress intensity factor for repaired crack with bonded composite patch under thermo-mechanical loading, Journal of Reinforced Plastics and Comoposites. 30 (2011) 416-424.
DOI: 10.1177/0731684410397899
Google Scholar
[29]
ABAQUS/CAE user's manual. Hibbitt, Karlsson & Sorensen,6.14.
Google Scholar
[30]
E.F. Rybicki, M.F. Kanninen, A finite element calculation of stress intensity factors by a modified crack closure integral, Eng Fract Mech. 9 (1977) 931-938.
DOI: 10.1016/0013-7944(77)90013-3
Google Scholar
[31]
R. Krueger, The virtual crack closure technique: history, approach and applications, ICASE Hampton VA USA, (2004).
Google Scholar
[32]
A.Leski, Implementation of the virtual crack closure technique in engineering FE calculations, Finite Elem Anal Des. 43 (2007) 261-268.
DOI: 10.1016/j.finel.2006.10.004
Google Scholar
[33]
R. Mhamdia, B. Serier, B. Bachir Bouiadjra, M. Belhouari, Numerical analysis of the patch shape effects on the performances of bonded composite repair in aircraft structures, Composites Part B. 43 (2012) 391-397.
DOI: 10.1016/j.compositesb.2011.08.047
Google Scholar
[34]
T. Ting, R. Jones, W.K. Chiu, H.I. Marshall, J.M. Greer, Composites repairs to rib stiffened panels, Composites Structures. 47(1999) 737-743.
DOI: 10.1016/s0263-8223(00)00046-5
Google Scholar
[35]
B. Bachir Bouiadjra, H. Fekirini, B. Serier, M. Benguediab, Numerical analysis of the beneficial effect of the double symmetric patch repair compared to single one in aircraft structures, Comput Mater Sci. 38 (2007) 824-829.
DOI: 10.1016/j.commatsci.2006.05.020
Google Scholar