Numerical Analysis of the Bonded Composite Shape Effects under Thermal Loading in Aircraft Structures

Article Preview

Abstract:

The design of the optimal shape of patch with a good compromise between mechanical performances and manufacturing aspects can be sought in order to get the maximum structural safety-cost ratio. In this work an analysis has been conducted for development of a finite element methodology to circumvent the thermal effect problem in the bonded repair. Physical and geometrical parameters of the repair material were assumed to be variables, this method are based on two approaches: The first, have modified the patch shape by removing the two isosceles notches (h varied) for minimisation the heating size in the direction of loading. For the second step of the study, the same surface previously deduced are compensate in the other direction with varied the property module for the adhesive layer, for inducing a larger the area covering of crack tip and reduce the thermal stress. The values of thermal stresses obtained from the variation of these two parameters were found to be low compared to the obtained values for initial shape.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Baker, R.J. Callinan, M.J. Davis, R. Jones, J.G. Williams, Repair of mirage aircraft using BFRP crack patching technology, Theor Appl Fract Mech. 2 (1984) 1-16.

DOI: 10.1016/0167-8442(84)90035-1

Google Scholar

[2] A.A. Baker, Repair of cracked or defective metallic components with advanced fiber composites an overview of Australian work, Composite Structure. 2 (1984) 153-181.

DOI: 10.1016/0263-8223(84)90025-4

Google Scholar

[3] A.A. Baker Fibre, composite repair of cracked metallic aircraft components-practical and basic aspect, Composites. 18(4) (1987) 293-308.

DOI: 10.1016/0010-4361(87)90293-x

Google Scholar

[4] A.A. Baker, Bonded composite repair for fatigue-cracked primary aircraft structure, Compos Struct. 74 (1999) 431-43.

DOI: 10.1016/s0263-8223(00)00011-8

Google Scholar

[5] S. Naboulsi, S. Mall, Methodology to analyze aerospace structures repaired with a bonded composite patch, J Strain Anal. 34(6) (1999) 395–412.

DOI: 10.1243/0309324991513849

Google Scholar

[6] P. Kumar, P.S. Shinde, G. Bhoyar, Fracture toughness and shear strength of the bonded interface between an aluminium alloy skin and a FRP patch, Journal of The Institution of Engineers C. 100(5) (2019) 779-789.

DOI: 10.1007/s40032-018-0467-1

Google Scholar

[7] Y.W. Kwon, B.L. Hall, Analyses of cracks in thick stiffened plates repaired with singlesided composite patch, Composite Structures. 119 (2015) 727-737.

DOI: 10.1016/j.compstruct.2014.09.052

Google Scholar

[8] A. Rasane, P. Kumar, M.P. Khond, Optimizing the size of a CFRP patch to repair a crack in a thin sheet, The Journal of Adhesion. 93(13) (2017) 1064-1080.

DOI: 10.1080/00218464.2016.1204236

Google Scholar

[9] M. Jamal-Omidi, M. Falah, D. Taherifar, 3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM, Struct Eng. Mech. 50(4) (2014) 525-539.

DOI: 10.12989/sem.2014.50.4.525

Google Scholar

[10] J. Dai, P. Zhao, H. Su, Y. Wang, Mechanical Behavior of Single Patch Composite Repaired Al Alloy Plates: Experimental and Numerical Analysis, Materials. 13(2020) 2740.

DOI: 10.3390/ma13122740

Google Scholar

[11] X. Liu, J. Wu, J. Xi, Z. Yu, Bonded Repair Optimization of Cracked Aluminum Alloy Plate by Microwave Cured Carbon‐ Aramid Fiber/Epoxy Sandwich Composite Patch, Materials. 12 (2019) 1655.

DOI: 10.3390/ma12101655

Google Scholar

[12] A. Yousefi, M.M. Mashhadi, M. Safarabadi, Numerical analysis of cracked aluminum plate repaired with multi‐scale reinforcement composite patches, Journal of Composite Materials. (54) (2020) 4341-4357.

DOI: 10.1177/0021998320931177

Google Scholar

[13] G. Tsai, S. Shen, Fatigue analysis of cracked thick aluminium plate bonded with composite patches, Composite Structures. 64(1) (2004) 79-90.

DOI: 10.1016/s0263-8223(03)00216-2

Google Scholar

[14] S. Mohammadi, Parametric investigation of one-sided composite patch efficiency for repairing crack in mixed mode considering different thicknesses of the main plate, Journal of Composite Materials.54 (2020) 3067-3079.

DOI: 10.1177/0021998320909535

Google Scholar

[15] A. Mahadesh Kumar, S.A. Hakeem, Optimum design of symmetric composite patch repair to centre cracked metallic sheet, Composite Structures. 49(3) (2000) 285-292.

DOI: 10.1016/s0263-8223(00)00005-2

Google Scholar

[16] T. Haftka,V. Grandhi, Structural shape optimization—A survey, Computer Methods in Applied Mechanics and Engineering. 57(1986) 91-106.

DOI: 10.1016/0045-7825(86)90072-1

Google Scholar

[17] K. Wieghardt, D. Hartmann, K.R. Leimbach, Interactive shape optimization of continuum structures, Engineering structures. 19(4) (1997) 325-331.

DOI: 10.1016/s0141-0296(96)00077-6

Google Scholar

[18] R. Mhamdia, B. Serier, B. Bachir Bouiadjra, M. Belhouari, Comparison between double and single sided bonded composite repair with circular shape, Composites. B 43 (2012) 391-397.

DOI: 10.1016/j.compositesb.2011.08.047

Google Scholar

[19] M. Ramji, R. Srilakshmi, M. Bhanu Prakash, Towards optimization of patch shape on the performance of bonded composite repair using FEM, Compos B Eng. 45(2013) 710-720.

DOI: 10.1016/j.compositesb.2012.07.049

Google Scholar

[20] D.K. Kaddouri, B.Ouinas, B. Bachir Bouiadjra, FE analysis of the behaviour of octagonal bonded composite repair in aircraft structures, Comput Mater Sci. 43 (2008) 1109-1011.

DOI: 10.1016/j.commatsci.2008.03.003

Google Scholar

[21] D. Ouinas, B. Bouiadjra, B.Serier, M. Said Bekkouche, Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge, Comput Struct. 80(4) (2007) 514-522.

DOI: 10.1016/j.compstruct.2006.07.005

Google Scholar

[22] D. Ouinas, A. Hebbar, B. Bachir Bouiadjra, M. Belhouari, B.Serier, Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch, Compos Part B Eng. 40 (2009) 804–810.

DOI: 10.1016/j.compositesb.2009.06.002

Google Scholar

[23] A. Albedah, B. Bachir Bouiadjra, R. Mhamdia, F Benyahia, Es-Saheb M, Comparison between double and single sided bonded composite repair with circular shape, Materials and Design. 32 (2011) 996-1000.

DOI: 10.1016/j.matdes.2010.08.022

Google Scholar

[24] M.S. Bouchiba, B.Serier, New optimization method of patch shape to improve the effectiveness of cracked plates repair. Structural Engineering & Mechanics 58(2) (2016) 301-326.

DOI: 10.12989/sem.2016.58.2.301

Google Scholar

[25] F. Benyahia, A. Albedaha, B.A. Bachir Bouiadjra, Elliptical and circular bonded composite repair under mechanical and thermal loading in aircraft structures, Materials Reseach. 17(2014) 1219-1225.

DOI: 10.1590/1516-1439.259613

Google Scholar

[26] L. Aminallah, T. Achour, B. Bachir Bouiadjra, B. Serier, A. Amrouche, X. Feaugas, et al. Analysis of the distribution of thermal residual stresses in bonded composite repair of metallic aircraft structures. Computational Materials Science. 46(4) (2009) 1023-1027.

DOI: 10.1016/j.commatsci.2009.05.008

Google Scholar

[27] A. Albedah, B. Bachir Bouiadjra, L. Aminallah, Numerical analysis of the effect of thermal residual stresses on the performances of bonded composite repairs in aircraft structures, Compos Part B Eng. 42 (2011) 511-516.

DOI: 10.1016/j.compositesb.2010.11.013

Google Scholar

[28] R. Mhamdia, B. Bachir Bouadjra, B. Serier, Stress intensity factor for repaired crack with bonded composite patch under thermo-mechanical loading, Journal of Reinforced Plastics and Comoposites. 30 (2011) 416-424.

DOI: 10.1177/0731684410397899

Google Scholar

[29] ABAQUS/CAE user's manual. Hibbitt, Karlsson & Sorensen,6.14.

Google Scholar

[30] E.F. Rybicki, M.F. Kanninen, A finite element calculation of stress intensity factors by a modified crack closure integral, Eng Fract Mech. 9 (1977) 931-938.

DOI: 10.1016/0013-7944(77)90013-3

Google Scholar

[31] R. Krueger, The virtual crack closure technique: history, approach and applications, ICASE Hampton VA USA, (2004).

Google Scholar

[32] A.Leski, Implementation of the virtual crack closure technique in engineering FE calculations, Finite Elem Anal Des. 43 (2007) 261-268.

DOI: 10.1016/j.finel.2006.10.004

Google Scholar

[33] R. Mhamdia, B. Serier, B. Bachir Bouiadjra, M. Belhouari, Numerical analysis of the patch shape effects on the performances of bonded composite repair in aircraft structures, Composites Part B. 43 (2012) 391-397.

DOI: 10.1016/j.compositesb.2011.08.047

Google Scholar

[34] T. Ting, R. Jones, W.K. Chiu, H.I. Marshall, J.M. Greer, Composites repairs to rib stiffened panels, Composites Structures. 47(1999) 737-743.

DOI: 10.1016/s0263-8223(00)00046-5

Google Scholar

[35] B. Bachir Bouiadjra, H. Fekirini, B. Serier, M. Benguediab, Numerical analysis of the beneficial effect of the double symmetric patch repair compared to single one in aircraft structures, Comput Mater Sci. 38 (2007) 824-829.

DOI: 10.1016/j.commatsci.2006.05.020

Google Scholar