[1]
E. Jaafar, M. Kashif, S. K Sahari, Z. Ngaini, Study on morphological, optical and electrical properties of graphene oxide (GO) and rGO, Materials Science Forum, 917 (2018) 112-116.
DOI: 10.4028/www.scientific.net/msf.917.112
Google Scholar
[2]
S. Rani, M. Kumar, S. Sharma, and D. Kumar, Effect of Reduced Graphene Oxide and Annealing Temperature on the Photocatalytic Properties of Titanium Oxide, International Journal of Materials Science and Engineering, 3(4) (2015) 267–278.
Google Scholar
[3]
Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes, Appl. Phys. Lett., vol. 94( 02192) (2009) 1–3.
DOI: 10.1063/1.3068498
Google Scholar
[4]
G. Venugopal, K. Krishnamoorthy, R. Mohan, and S. Kim, An investigation of the electrical transport properties of graphene-oxide thin films,, Mater. Chem. Phys., 132(1) (2012) 29-33.
DOI: 10.1016/j.matchemphys.2011.10.040
Google Scholar
[5]
V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, Effect of reduction time on third order optical nonlinearity of reduced graphene oxide, Opt. Mater. (Amst), 66 (2017) 460–468.
DOI: 10.1016/j.optmat.2017.01.042
Google Scholar
[6]
L. Y. Wang, Y. Park, P. Cui, S. Bak, H. Lee, S. M. Lee, and H. Lee, Facile preparation of ann-type reduced graphene oxide field effect transistor at room temperature, Chem. Commun., 8(10) (2014), 3498–3502.
DOI: 10.1039/c3cc47224h
Google Scholar
[7]
L. Cardenas, J. MacLeod, J. Lipton-Duffin, D. G. Seifu, F. Popescu, M. Siaj, D. Mantovani, and F. Rosei, Reduced graphene oxide growth on stainless steel for medical applications, Nanoscale, 6(15) (2014) 8664–70.
DOI: 10.1039/c4nr02512a
Google Scholar
[8]
S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. -E. Wu, S. -F. Chen, C. -P. Liu, S. T. Nguyen, R. S. Ruoff, Graphene–silica composite thin films as transparent conductors, Nano Lett. 7 (2007) 1888–1892.
DOI: 10.1021/nl070477+
Google Scholar
[9]
S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts, Carbon, 50 (2012) 5331–5339.
DOI: 10.1016/j.carbon.2012.07.023
Google Scholar
[10]
G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced 400 graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (401) (2008) 270–274.
DOI: 10.1038/nnano.2008.83
Google Scholar
[11]
J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett., 8(10) (2008) 3137–3140.
DOI: 10.1021/nl8013007
Google Scholar
[12]
D. Kim, S. J. Yang, Y. S. Kim, H. Jung, and C. R. Park, Simple and cost-effective reduction of graphite oxide by sulfuric acid, Carbon N. Y., 50( 9) (2012) 3229–3232.
DOI: 10.1016/j.carbon.2011.11.014
Google Scholar
[13]
Jiao, Liying, Li Zhang, Xinran Wang, Georgi Diankov, and Hongjie Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature, 458(7240) (2009) 877-880.
DOI: 10.1038/nature07919
Google Scholar
[14]
Wei Dacheng, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang, and Gui Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano letters, 9(5) (2009) 1752-1758.
DOI: 10.1021/nl803279t
Google Scholar
[15]
Tang, Zhihong, Jing Zhuang, and Xun Wang, Exfoliation of graphene from graphite and their self-assembly at the oil− water interface, Langmuir, 26(11) (2010) 9045-9049.
DOI: 10.1021/la9049082
Google Scholar
[16]
Shivaraman Shriram, Robert A. Barton, Xun Yu, Jonathan Alden, Lihong Herman, M. V. S. Chandrashekhar, Jiwoong Park, Free-standing epitaxial graphene, Nano letters, 9( 9) (2009) 3100-3105.
DOI: 10.1021/nl900479g
Google Scholar
[17]
Qu, Jiangang, Nanfei He, Shradha V. Patil, Yanan Wang, Debjyoti Banerjee, and Wei Gao, Screen printing of graphene oxide patterns onto viscose nonwovens with tunable penetration depth and electrical conductivity, ACS applied materials & interfaces, 11(16) (2019) 14944-14951.
DOI: 10.1021/acsami.9b00715
Google Scholar
[18]
Li Guo, Ya-Wei Hao, Pei-Long Li, Jiang-Feng Song, Rui-Zhu Yang, Xiu-Yan Fu, Sheng-Yi Xie, Jing Zhao & Yong-Lai Zhang, Improved NO2 gas sensing properties of graphene oxide reduced by two-beam-laser interference, Scientific reports, 8:4918 (2018) 1-7. DOI : 10.1038/s41598-018-23091-1.
DOI: 10.1038/s41598-018-23091-1
Google Scholar
[19]
Hu Long, Anna Harley-Trochimczyk, Thang Pham, Zirong Tang, Tielin Shi, Alex Zettl, Carlo Carraro, Marcus A. Worsley, Roya Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection, Advanced Functional Materials, 26(28) (2016) 5158-5165.
DOI: 10.1002/adfm.201601562
Google Scholar
[20]
Hao Zhang, Qun Li, Jinyu Huang, Yu Du and Shuang Chen Ruan, Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature, sensors, 16(7) (2016) 1152.
DOI: 10.3390/s16071152
Google Scholar
[21]
B. Ismail, M. Abaab, and B. Rezig, Structural and electrical properties of ZnO films prepared by screen printing technique, Thin Solid Films, 383(1-2) (2001) 92-94.
DOI: 10.1016/s0040-6090(00)01787-9
Google Scholar
[22]
He, Jinlu, and Li Fang, Controllable synthesis of reduced graphene oxide, Current Applied Physics, 16(9) (2016) 1152-1158.
DOI: 10.1016/j.cap.2016.06.011
Google Scholar
[23]
Dharma K Halwar, Vikas V Deshmane, Arun V Patil , Orthorhombic molybdenum trioxide micro-planks as carbon monoxide gas sensor, Materials Research Express, 6(10) (2019) 105913.
DOI: 10.1088/2053-1591/ab403e
Google Scholar
[24]
Vikas V Deshmane and Arun V Patil, Study of In2O3 and α-Fe2O3 nano-composite as a petrol vapor sensor Mater. Res. Express 6 (2019) 025904 https://doi.org/10.1088/2053-1591/aaed90.
DOI: 10.1088/2053-1591/aaed90
Google Scholar
[25]
Jayant Singh, Gautam Anand, Deepak Kumar and Naresh Tandon, Graphene based composite grease for elasto-hydrodynamic lubricated point, IOP Conf. Series: Materials Science and Engineering 149 (2016) 012195.
DOI: 10.1088/1757-899x/149/1/012195
Google Scholar
[26]
Some Surajit, Kim Youngmin, Yoon Yeoheung, Hee Joun Yoo, Saemi Lee, Younghun Park & Hyoyoung Lee, High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process, Scientific Reports, 3 (2013) 1929.
DOI: 10.1038/srep01929
Google Scholar
[27]
Pankaj Singh Rawat, R. C. Srivastava, Gagan Dixit, K. Asokan, Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation, Vacuum, 182 (2020) 109700.
DOI: 10.1016/j.vacuum.2020.109700
Google Scholar
[28]
Shen Yang, Maurizi Luca, Magnacca Giuliana, Boffa Vittorio, and Yuanzheng Yue, Tuning Porosity of Reduced Graphene Oxide Membrane Materials by Alkali Activation, Nanomaterials, 10 (2020) 2093;.
DOI: 10.3390/nano10112093
Google Scholar
[29]
Ghosh Tapas K, Gope Shirshendu, Rana Dipak, Indranil Roy, Gunjan Sarkar, Sourav Sadhukhan, Amartya Bhattacharya, Krishnendu Pramanik, Sanatan Chattopadhyay, Mukut Chakraborty, Dipankar Chattopadhyay, Physical and electrical characterization of reduced graphene oxide synthesized adopting green route, Bull. Mater. Sci., 39(2) (2016) 543–550.
DOI: 10.1007/s12034-016-1156-4
Google Scholar
[30]
Priya Parvathi Ameena Jose, M. S. Kala, Alphonsa Vijaya Joseph, Nandakumar Kalarikkal, Sabu Thomas, Reduced graphene oxide/silver nanohybrid as a multifunctional material for antibacterial, anticancer, and SERS applications, Applied Physics A, 126 (2020), 58, https://doi.org/10.1007/s00339-019-3237-x.
DOI: 10.1007/s00339-019-3237-x
Google Scholar
[31]
Baleeswaraiah Muchharla, T N Narayanan, Kaushik Balakrishnan, Pulickel M Ajayan and Saikat Talapatra, Temperature dependent electrical transport of disordered reduced graphene oxide 2D Mater. 1 (2014) 011008.
DOI: 10.1088/2053-1583/1/1/011008
Google Scholar
[32]
Yuqiang Zeng, Tian Li, Yonggang Yao, Tangyuan Li, Liangbing Hu, and Amy Marconnet, Thermally Conductive Reduced Graphene Oxide Thin Films for Extreme Temperature Sensors, Adv. Funct. Mater. 29 (2019) 1901388.
DOI: 10.1002/adfm.201901388
Google Scholar
[33]
A. S. Garde, LPG and NH3 Sensing Properties of SnO2 Thick Film Resistors Prepared by Screen Printing Technique, Sensors & Transducers, 122(11) (2010) 128.
Google Scholar
[34]
A. V. Patil, C. G. Dighavkar, R. Y. Borse, NO2 Gas Sensing Properties of Screen Printed ZnO Thick Films, Sensors & Transducers Journal, Vol. 101, Issue 2, February 2009, pp.96-103.
Google Scholar
[35]
Huang Yifan, Weicheng Jiao, Zhenming Chu, Guomin Ding, Meiling Yan, Xue Zhong, and Rongguo Wang, Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P–N transition and optoelectronic visible light enhancement performance, Journal of Materials Chemistry C, 7(28) (2019) 8616-8625.
DOI: 10.1039/c9tc02436k
Google Scholar
[36]
Kailasa Saraswathi, M. Sai Bhargava Reddy, B. Geeta Rani, Hussen Maseed, and K. Venkateswara Rao, Twisted polyaniline nanobelts@ rGO for room temperature NO2 sensing, Materials Letters, 257 (2019) 126687.
DOI: 10.1016/j.matlet.2019.126687
Google Scholar
[37]
Tang Shaobin, and Zexing Cao, Adsorption of nitrogen oxides on graphene and graphene oxides: Insights from density functional calculations, The Journal of chemical physics, 134(4) (2011) 044710.
DOI: 10.1063/1.3541249
Google Scholar
[38]
Jesse D. Fowler, Matthew J. Allen, Vincent C. Tung, Yang Yang, Richard B. Kaner, and Bruce H. Weiller, Practical chemical sensors from chemically derived graphene, ACS nano, 3(2) (2009) 301-306.
DOI: 10.1021/nn800593m
Google Scholar