Reduced Graphene Oxide Screen Printed Thick Film as NO2 Gas Sensor at Low Temperature

Article Preview

Abstract:

Most of the recent reduced graphene oxide (rGO) based sensors shows gas sensitivity above 50o to 150°C. The present investigation deals with the gas sensing at 50°C temperature. In the present research work, thick film sensors of rGO were developed on glass substrate by using standard screen-printing technique. The silver paste of rGO was used to make electrodes for contact on thick films for the electrical and gas sensing system. The electrical properties of rGO thick films such as resistivity, activation energy and temperature coefficient were studied. The resistivity of rGO thick films was found to be 84.84 Ω/m. The morphological, elemental and structural properties of rGO thick films were analyzed by SEM, EDS and XRD techniques respectively. The crystallite size of rGO thick films was found as 28.42 nm by using Scherer’s formula. The rGO thick films were prepared and exposed to Ethanol, NH3, NO2 and LPG gases to determine sensitivity and selectivity. The sensitivity of NO2 has been found to be maximum among other exposed gases. The maximum sensitivity of NO2 gas was 92.55 % at 50 °C found with fast response (~ 11 sec) and recovery (~ 19 sec) time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-55

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Jaafar, M. Kashif, S. K Sahari, Z. Ngaini, Study on morphological, optical and electrical properties of graphene oxide (GO) and rGO, Materials Science Forum, 917 (2018) 112-116.

DOI: 10.4028/www.scientific.net/msf.917.112

Google Scholar

[2] S. Rani, M. Kumar, S. Sharma, and D. Kumar, Effect of Reduced Graphene Oxide and Annealing Temperature on the Photocatalytic Properties of Titanium Oxide, International Journal of Materials Science and Engineering, 3(4) (2015) 267–278.

Google Scholar

[3] Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes, Appl. Phys. Lett., vol. 94( 02192) (2009) 1–3.

DOI: 10.1063/1.3068498

Google Scholar

[4] G. Venugopal, K. Krishnamoorthy, R. Mohan, and S. Kim, An investigation of the electrical transport properties of graphene-oxide thin films,, Mater. Chem. Phys., 132(1) (2012) 29-33.

DOI: 10.1016/j.matchemphys.2011.10.040

Google Scholar

[5] V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, Effect of reduction time on third order optical nonlinearity of reduced graphene oxide, Opt. Mater. (Amst), 66 (2017) 460–468.

DOI: 10.1016/j.optmat.2017.01.042

Google Scholar

[6] L. Y. Wang, Y. Park, P. Cui, S. Bak, H. Lee, S. M. Lee, and H. Lee, Facile preparation of ann-type reduced graphene oxide field effect transistor at room temperature, Chem. Commun., 8(10) (2014), 3498–3502.

DOI: 10.1039/c3cc47224h

Google Scholar

[7] L. Cardenas, J. MacLeod, J. Lipton-Duffin, D. G. Seifu, F. Popescu, M. Siaj, D. Mantovani, and F. Rosei, Reduced graphene oxide growth on stainless steel for medical applications, Nanoscale, 6(15) (2014) 8664–70.

DOI: 10.1039/c4nr02512a

Google Scholar

[8] S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. -E. Wu, S. -F. Chen, C. -P. Liu, S. T. Nguyen, R. S. Ruoff, Graphene–silica composite thin films as transparent conductors, Nano Lett. 7 (2007) 1888–1892.

DOI: 10.1021/nl070477+

Google Scholar

[9] S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts, Carbon, 50 (2012) 5331–5339.

DOI: 10.1016/j.carbon.2012.07.023

Google Scholar

[10] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced 400 graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3 (401) (2008) 270–274.

DOI: 10.1038/nnano.2008.83

Google Scholar

[11] J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Reduced graphene oxide molecular sensors, Nano Lett., 8(10) (2008) 3137–3140.

DOI: 10.1021/nl8013007

Google Scholar

[12] D. Kim, S. J. Yang, Y. S. Kim, H. Jung, and C. R. Park, Simple and cost-effective reduction of graphite oxide by sulfuric acid, Carbon N. Y., 50( 9) (2012) 3229–3232.

DOI: 10.1016/j.carbon.2011.11.014

Google Scholar

[13] Jiao, Liying, Li Zhang, Xinran Wang, Georgi Diankov, and Hongjie Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature, 458(7240) (2009) 877-880.

DOI: 10.1038/nature07919

Google Scholar

[14] Wei Dacheng, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang, and Gui Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano letters, 9(5) (2009) 1752-1758.

DOI: 10.1021/nl803279t

Google Scholar

[15] Tang, Zhihong, Jing Zhuang, and Xun Wang, Exfoliation of graphene from graphite and their self-assembly at the oil− water interface, Langmuir, 26(11) (2010) 9045-9049.

DOI: 10.1021/la9049082

Google Scholar

[16] Shivaraman Shriram, Robert A. Barton, Xun Yu, Jonathan Alden, Lihong Herman, M. V. S. Chandrashekhar, Jiwoong Park, Free-standing epitaxial graphene, Nano letters, 9( 9) (2009) 3100-3105.

DOI: 10.1021/nl900479g

Google Scholar

[17] Qu, Jiangang, Nanfei He, Shradha V. Patil, Yanan Wang, Debjyoti Banerjee, and Wei Gao, Screen printing of graphene oxide patterns onto viscose nonwovens with tunable penetration depth and electrical conductivity, ACS applied materials & interfaces, 11(16) (2019) 14944-14951.

DOI: 10.1021/acsami.9b00715

Google Scholar

[18] Li Guo, Ya-Wei Hao, Pei-Long Li, Jiang-Feng Song, Rui-Zhu Yang, Xiu-Yan Fu, Sheng-Yi Xie, Jing Zhao & Yong-Lai Zhang, Improved NO2 gas sensing properties of graphene oxide reduced by two-beam-laser interference, Scientific reports, 8:4918 (2018) 1-7. DOI : 10.1038/s41598-018-23091-1.

DOI: 10.1038/s41598-018-23091-1

Google Scholar

[19] Hu Long, Anna Harley-Trochimczyk, Thang Pham, Zirong Tang, Tielin Shi, Alex Zettl, Carlo Carraro, Marcus A. Worsley, Roya Maboudian, High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection, Advanced Functional Materials, 26(28) (2016) 5158-5165.

DOI: 10.1002/adfm.201601562

Google Scholar

[20] Hao Zhang, Qun Li, Jinyu Huang, Yu Du and Shuang Chen Ruan, Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature, sensors, 16(7) (2016) 1152.

DOI: 10.3390/s16071152

Google Scholar

[21] B. Ismail, M. Abaab, and B. Rezig, Structural and electrical properties of ZnO films prepared by screen printing technique, Thin Solid Films, 383(1-2) (2001) 92-94.

DOI: 10.1016/s0040-6090(00)01787-9

Google Scholar

[22] He, Jinlu, and Li Fang, Controllable synthesis of reduced graphene oxide, Current Applied Physics, 16(9) (2016) 1152-1158.

DOI: 10.1016/j.cap.2016.06.011

Google Scholar

[23] Dharma K Halwar, Vikas V Deshmane, Arun V Patil , Orthorhombic molybdenum trioxide micro-planks as carbon monoxide gas sensor, Materials Research Express, 6(10) (2019) 105913.

DOI: 10.1088/2053-1591/ab403e

Google Scholar

[24] Vikas V Deshmane and Arun V Patil, Study of In2O3 and α-Fe2O3 nano-composite as a petrol vapor sensor Mater. Res. Express 6 (2019) 025904 https://doi.org/10.1088/2053-1591/aaed90.

DOI: 10.1088/2053-1591/aaed90

Google Scholar

[25] Jayant Singh, Gautam Anand, Deepak Kumar and Naresh Tandon, Graphene based composite grease for elasto-hydrodynamic lubricated point, IOP Conf. Series: Materials Science and Engineering 149 (2016) 012195.

DOI: 10.1088/1757-899x/149/1/012195

Google Scholar

[26] Some Surajit, Kim Youngmin, Yoon Yeoheung, Hee Joun Yoo, Saemi Lee, Younghun Park & Hyoyoung Lee, High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process, Scientific Reports, 3 (2013) 1929.

DOI: 10.1038/srep01929

Google Scholar

[27] Pankaj Singh Rawat, R. C. Srivastava, Gagan Dixit, K. Asokan, Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation, Vacuum, 182 (2020) 109700.

DOI: 10.1016/j.vacuum.2020.109700

Google Scholar

[28] Shen Yang, Maurizi Luca, Magnacca Giuliana, Boffa Vittorio, and Yuanzheng Yue, Tuning Porosity of Reduced Graphene Oxide Membrane Materials by Alkali Activation, Nanomaterials, 10 (2020) 2093;.

DOI: 10.3390/nano10112093

Google Scholar

[29] Ghosh Tapas K, Gope Shirshendu, Rana Dipak, Indranil Roy, Gunjan Sarkar, Sourav Sadhukhan, Amartya Bhattacharya, Krishnendu Pramanik, Sanatan Chattopadhyay, Mukut Chakraborty, Dipankar Chattopadhyay, Physical and electrical characterization of reduced graphene oxide synthesized adopting green route, Bull. Mater. Sci., 39(2) (2016) 543–550.

DOI: 10.1007/s12034-016-1156-4

Google Scholar

[30] Priya Parvathi Ameena Jose, M. S. Kala, Alphonsa Vijaya Joseph, Nandakumar Kalarikkal, Sabu Thomas, Reduced graphene oxide/silver nanohybrid as a multifunctional material for antibacterial, anticancer, and SERS applications, Applied Physics A, 126 (2020), 58, https://doi.org/10.1007/s00339-019-3237-x.

DOI: 10.1007/s00339-019-3237-x

Google Scholar

[31] Baleeswaraiah Muchharla, T N Narayanan, Kaushik Balakrishnan, Pulickel M Ajayan and Saikat Talapatra, Temperature dependent electrical transport of disordered reduced graphene oxide 2D Mater. 1 (2014) 011008.

DOI: 10.1088/2053-1583/1/1/011008

Google Scholar

[32] Yuqiang Zeng, Tian Li, Yonggang Yao, Tangyuan Li, Liangbing Hu, and Amy Marconnet, Thermally Conductive Reduced Graphene Oxide Thin Films for Extreme Temperature Sensors, Adv. Funct. Mater. 29 (2019) 1901388.

DOI: 10.1002/adfm.201901388

Google Scholar

[33] A. S. Garde, LPG and NH3 Sensing Properties of SnO2 Thick Film Resistors Prepared by Screen Printing Technique, Sensors & Transducers, 122(11) (2010) 128.

Google Scholar

[34] A. V. Patil, C. G. Dighavkar, R. Y. Borse, NO2 Gas Sensing Properties of Screen Printed ZnO Thick Films, Sensors & Transducers Journal, Vol. 101, Issue 2, February 2009, pp.96-103.

Google Scholar

[35] Huang Yifan, Weicheng Jiao, Zhenming Chu, Guomin Ding, Meiling Yan, Xue Zhong, and Rongguo Wang, Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P–N transition and optoelectronic visible light enhancement performance, Journal of Materials Chemistry C, 7(28) (2019) 8616-8625.

DOI: 10.1039/c9tc02436k

Google Scholar

[36] Kailasa Saraswathi, M. Sai Bhargava Reddy, B. Geeta Rani, Hussen Maseed, and K. Venkateswara Rao, Twisted polyaniline nanobelts@ rGO for room temperature NO2 sensing, Materials Letters, 257 (2019) 126687.

DOI: 10.1016/j.matlet.2019.126687

Google Scholar

[37] Tang Shaobin, and Zexing Cao, Adsorption of nitrogen oxides on graphene and graphene oxides: Insights from density functional calculations, The Journal of chemical physics, 134(4) (2011) 044710.

DOI: 10.1063/1.3541249

Google Scholar

[38] Jesse D. Fowler, Matthew J. Allen, Vincent C. Tung, Yang Yang, Richard B. Kaner, and Bruce H. Weiller, Practical chemical sensors from chemically derived graphene, ACS nano, 3(2) (2009) 301-306.

DOI: 10.1021/nn800593m

Google Scholar