[1]
Bagade, A., et al., Assessment of structural, morphological, magnetic and gas sensing properties of CoFe2O4 thin films. Journal of colloid and interface science, 2017. 497: pp.181-192.
DOI: 10.1016/j.jcis.2017.02.067
Google Scholar
[2]
Kumbhar, S., et al., Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni–Zn ferrite thin films. Materials Research Bulletin, 2015. 67: pp.47-54.
DOI: 10.1016/j.materresbull.2015.02.056
Google Scholar
[3]
Sun, J., et al., Synthesis of the nanocrystalline CoFe2O4 ferrite thin films by a novel sol–gel method using glucose as an additional agent. Materials Science and Engineering: B, 2012. 177(2): pp.269-273.
DOI: 10.1016/j.mseb.2011.12.017
Google Scholar
[4]
Zaquine, I., H. Benazizi, and J. Mage, Ferrite thin films for microwave applications. Journal of Applied Physics, 1988. 64(10): pp.5822-5824.
DOI: 10.1063/1.342218
Google Scholar
[5]
Pham, T.N., T.Q. Huy, and A.-T. Le, Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Advances, 2020. 10(52): pp.31622-31661.
DOI: 10.1039/d0ra05133k
Google Scholar
[6]
Goktas, A., F. Aslan, and A. Tumbul, Nanostructured Cu-doped ZnS polycrystalline thin films produced by a wet chemical route: the influences of Cu doping and film thickness on the structural, optical and electrical properties. Journal of Sol-Gel Science and Technology, 2015. 75(1): pp.45-53.
DOI: 10.1007/s10971-015-3674-8
Google Scholar
[7]
Phua, L., et al., Structure and magnetic characterizations of cobalt ferrite films prepared by spray pyrolysis. Thin Solid Films, 2009. 517(20): pp.5858-5861.
DOI: 10.1016/j.tsf.2009.03.065
Google Scholar
[8]
Mwakikunga, B.W., Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since michael faraday. Critical reviews in solid state and materials sciences, 2014. 39(1): pp.46-80.
DOI: 10.1080/10408436.2012.687359
Google Scholar
[9]
Jung, D.S., S.B. Park, and Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application. Korean Journal of Chemical Engineering, 2010. 27(6): pp.1621-1645.
DOI: 10.1007/s11814-010-0402-5
Google Scholar
[10]
Sutka, A., et al., Ethanol monitoring by ZnFe2O4 thin film obtained by spray pyrolysis. Sensors and Actuators B: Chemical, 2013. 176: pp.330-334.
DOI: 10.1016/j.snb.2012.09.061
Google Scholar
[11]
Leng, J., et al., Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chemical Society Reviews, 2019. 48(11): pp.3015-3072.
DOI: 10.1039/c8cs00904j
Google Scholar
[12]
Shamala, K., L. Murthy, and K.N. Rao, Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method. Materials Science and Engineering: B, 2004. 106(3): pp.269-274.
DOI: 10.1016/j.mseb.2003.09.036
Google Scholar
[13]
Kretzschmar, B., et al., Cobalt and manganese carboxylates for metal oxide thin film deposition by applying the atmospheric pressure combustion chemical vapour deposition process. RSC advances, 2018. 8(28): pp.15632-15640.
DOI: 10.1039/c8ra02288g
Google Scholar
[14]
Khaja Mohaideen, K. and P. Joy, High magnetostriction and coupling coefficient for sintered cobalt ferrite derived from superparamagnetic nanoparticles. Applied Physics Letters, 2012. 101(7): p.072405.
DOI: 10.1063/1.4745922
Google Scholar
[15]
El-Masry, M.M., R. Ramadan, and M. Ahmed, The effect of adding cobalt ferrite nanoparticles on the mechanical properties of epoxy resin. Results in Materials, 2020. 8: p.100160.
DOI: 10.1016/j.rinma.2020.100160
Google Scholar
[16]
Zhang, Y., et al., Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. Journal of Magnetism and Magnetic Materials, 2010. 322(21): pp.3470-3475.
DOI: 10.1016/j.jmmm.2010.06.047
Google Scholar
[17]
Mohammadifar, Y., et al., The synthesis of Co1− xDyxFe2O4 nanoparticles and thin films as well as investigating their magnetic and magneto-optical properties. Journal of magnetism and magnetic materials, 2014. 366: pp.44-49.
DOI: 10.1016/j.jmmm.2014.04.017
Google Scholar
[18]
Brucker, C., Magneto-Optical Thin Film Recording Materials in Practice, in Handbook of Magento-Optical Data Recording. 1995, Elsevier. pp.279-361.
DOI: 10.1016/b978-081551391-9.50007-5
Google Scholar
[19]
Jadhav, G.L., et al., Effect of magnesium substitution on the structural, morphological, optical and wettability properties of cobalt ferrite thin films. Physica B: Condensed Matter, 2019. 555: pp.61-68.
DOI: 10.1016/j.physb.2018.11.052
Google Scholar
[20]
Andhare, D.D., et al., Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B: Condensed Matter, 2020. 583: p.412051.
DOI: 10.1016/j.physb.2020.412051
Google Scholar
[21]
Patade, S.R., et al., Impact of crystallites on enhancement of bandgap of Mn1-xZnxFe2O4 (1≥ x≥ 0) nanospinels. Chemical Physics Letters, 2020. 745: p.137240.
DOI: 10.1016/j.cplett.2020.137240
Google Scholar