Dielectric, Magneto-Dielectric & Magnetic Properties of x[Co0.9Ni0.1Fe2O4]-(1-x)[0.5Ba0.7Ca0.3TiO3-0.5BaZr0.2Ti0.8O3] Multiferroic Composite

Article Preview

Abstract:

In the present work, we have synthesized x [Co0.9Ni0.1Fe2O4]-(1-x) [0.5Ba0.7Ca0.3TiO3-0.5BaZr0.2Ti0.8O3], x = 0.3, 0.4 & 0.5 multiferroic composite by hydroxide co-precipitation method. The structural and morphological analysis of the composite was carried out by using X-ray diffraction and Scanning Electron Microscopy. The XRD spectra confirm the perovskite phase and spinel phase. Dielectric properties of the composite were studied using Impedance analyzer. The variation of dielectric constant and loss of tangent (Quality factor) in the frequency range of 100 Hz to 1 MHz were investigated. Magnetocapacitance were measured for magnetic field up to 1 Tesla, which increases with increase in magnetic field. Dielectric constant possesses contribution due to magnetic field dependent interfacial polarization and variation due to induced stress which can be explained on the observed MD effect. Saturation magnetization of composites increases with increase in CNFO content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-71

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. L. Comstock, Review Modern magnetic materials in data storage, J. Mater. Sci. Mater. Electron 13 (2002) 509-523.

Google Scholar

[2] C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G. Shrinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys. 103 (2008) 1-36.

DOI: 10.1142/9789811210433_0005

Google Scholar

[3] B. K. Bammannavar, L. R. Naik, Electrical properties and magnetoelectric effect in (x)Ni0.5Zn0.5Fe2O4+(1−x)BPZT composites, Smart Mater. Struct. 18 (2009) 085013.

DOI: 10.1088/0964-1726/18/8/085013

Google Scholar

[4] S. W. Cheong, M. V. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nat. Mater. 6 (2007) 13-20.

DOI: 10.1038/nmat1804

Google Scholar

[5] R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films, Nat. Mater. 6 (2007) 21-29.

DOI: 10.1038/nmat1805

Google Scholar

[6] G. Lawes, A. P. Ramirez, C. M. Varma, M. A. Subramanian, Magnetodielectric effects from spin fluctuations in isostructural ferromagnetic and antiferromagnetic systems, Phys. Rev. Lett. 91 (2003) 257208-1-3.

DOI: 10.1103/physrevlett.91.257208

Google Scholar

[7] T. Bonaedy, K. M. Song, K. D. Sung, N. Hur, J. H. Jung, Magnetoelectric and magnetodielectric properties of (1- x)Ba 0.6Sr 0.4TiO 3-( x)La 0.7Ca 0.3MnO 3 composites, Solid State Commun. 148 (2008) 424-427.

DOI: 10.1016/j.ssc.2008.09.025

Google Scholar

[8] J. P. Praveen, T. Karthik, A. R. James, E. Chandrakala, S. Asthana, D. Das. Effect of poling process on piezoelectric properties of sol-gel derived BZT_BCT ceramics. J. Eur. Ceram. Soc. 35 (2014) 1785-1798.

DOI: 10.1016/j.jeurceramsoc.2014.12.010

Google Scholar

[9] N. B. Velhal, N. D. Patil, et. al., Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration, AIP Adv. 5(2015) 097166.

DOI: 10.1063/1.4931908

Google Scholar