SILAR Synthesized ZnO Thin Films

Article Preview

Abstract:

Zinc oxide (ZnO) thin films are synthesized by using modified successive ionic layer adsorption and reaction techniques (SILAR) on glass substrate at room temperature. These as deposited thin films are characterized for structural, compositional, surface morphology and optical characterizations using X-ray diffraction (XRD), energy dispersive X-ray absorption spectra analysis (EDAX), atomic force microscopy (AFM) and Uv-vis absorption spectroscopy. From XRD pattern; the low intensity peaks indicate that the films consist coarsely fine grains and/or amorphous in nature. The diffraction peaks observed at 2θ = 31.71 ̊, 36.27 ̊and 56.29 ̊ are attributed to (100), (101) and (110) planes having hexagonal phase while EDAX shows elemental traces for Zn and O. Surface morphology observed from the AFM corresponds granular shape evenly distributed over substrate surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-91

Citation:

Online since:

March 2022

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. D. Bai, E. G. Wang, P. X. Gao, Z. L. Wang, Measuring the work function at a nanobelt tip and at a nanoparticle surface, Nano Lett. 3 (2003) 1147–1150.

DOI: 10.1021/nl034342p

Google Scholar

[2] K. Vanheusden, W. L. Warren, D. R. Tallent, J. A. Voight, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys. 79 (1996) 7983–7990.

DOI: 10.1063/1.362349

Google Scholar

[3] S. Bachiv, C. Sandouly, J. Kossanyi, J.C. Ranford-Haret, Rare earth-doped polycrystalline zinc oxide electroluminescent ceramics, J. Phys. Chem. Solids 57 (1996) 1869–1879.

DOI: 10.1016/s0022-3697(96)00067-4

Google Scholar

[4] K. J. Albert, N. S. Lewis, C. L. Sahauer, G. A. Sotzing, S. E. Stizel, T. P. Vaid, D. R. Walt, Cross-Reactive chemical sensor arrays, Chem. Rev. 100 (2000) 2595–2626.

DOI: 10.1021/cr980102w

Google Scholar

[5] B. Z. Dong, G. J. Fang, J. F. Wang, W. J. Guan, X. Z. Zhao, Effect of thickness on structural, electrical and optical properties of ZnO: Al films deposited by Pulsed laser deposition, J. Appl. Phys. 101 (2007) 033713–033719.

DOI: 10.1063/1.2437572

Google Scholar

[6] Y. F. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, K. T. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Growth of ZnO Singal Crystal thin films on c-plane (0001) sapphire by plasma Enhanced molecular beam epitaxy, J. Cryst. Growth 181 (1997) 165–169.

DOI: 10.1016/s0022-0248(97)00286-8

Google Scholar

[7] G. L. Zhao, B. X. Lin, L. Hong, X. D. Meng, Z. X. Fu, Structural and luminescent properties of ZnO thin films deposited by atmospheric pressure chemical vapour deposition, Chin. Phys. Lett. 21 (2004) 1381–1383.

DOI: 10.1088/0256-307x/21/7/055

Google Scholar

[8] Z. G. Yao, X. Q. Zhang, H. K. Shang, X. Y. Teng, Y. S. Wang, S. H. Huang, Lasing action of high quality ZnO thin film deposited by radio-frequency magnetron sputtering, Chin. Phys. 14 (2005) 1205–1208.

DOI: 10.1088/1009-1963/14/6/025

Google Scholar

[9] Ennaqoui, M. Weber, R. Scheer, H. J. Lewerenz, Chemical-bath ZnO buffer Layer for CuInS2 thin-film solar cells, Sol. Energy Mater. Sol. Cells 54 (1992) 277–286.

DOI: 10.1016/s0927-0248(98)00079-8

Google Scholar

[10] G. T. Yusuf, H. O. Efunwole, M. A. Raimi, O. E. Alaje, A. K. Kazeem, Theoretical models and experimental approaches in physical chemistry, J. Nucl. Phys. Mater. Sci. Rad. Appl. 2 (2014) 73.

Google Scholar

[11] X. Zhang, S. Ma, F. Yang, Q. Zhao, F. Li, J. Liu, The evolution behaviour of microstructures and optical properties of ZnO film using a Ti buffer layer, Ceram. Inter. 39 (2013) 7993.

DOI: 10.1016/j.ceramint.2013.03.066

Google Scholar

[12] H. Fan, S. Xu, X. Cao, D. Liu, Y. Yin, H. Hao, D. Wei, Y. Shen, Ultra-long Zn2SnO4-ZnO microwires based gas sensor for hydrogen detection, Appl. Surf. Sci. 400 (2017) 440.

DOI: 10.1016/j.apsusc.2016.12.221

Google Scholar

[13] K. M. Sandeep, S. Bhat, S. M. Dharmaprakash, Structural, optical and LED characteristics of ZnO and Al doped ZnO thin films, J. Phys. Chem. Solid 104 (2017) 36.

DOI: 10.1016/j.jpcs.2017.01.003

Google Scholar

[14] P. Malar, S. Kasiviswanathan, A comparative study of CuInSe2 and CuIn3Se5 films using transmission electron microscopy, optical absorption and Rutherford Backscattering spectrometry, Sol. Energy Mater. Sol. Cells 88 (2005) 281–292.

DOI: 10.1016/j.solmat.2004.11.002

Google Scholar

[15] S. Arunkumar, T. Hou, Y. B. Kim, B. Choi, S. H. Park, S. Jung, D. W. Lee, Au decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature, Sens. Act. B 243 (2017) 990.

DOI: 10.1016/j.snb.2016.11.152

Google Scholar

[16] X. Tian, Z. Pan, H. Zhang, Y. Xie, X. Zeng, C. Xiao, G. Hu, Z. Wei, Preparation and characterization of vertically aligned ZnO microrods on glass substrate, Mater. Lett. 97 (2013) 71.

DOI: 10.1016/j.matlet.2013.01.116

Google Scholar

[17] P. Lu, W. Zhou, Y. Li, J. Wang, P. Wu, Abnormal room temperature ferromagnetism in CuO/ZnO nanocomposites via hydrothermal method, Appl. Surf. Sci. 399 (2017) 396.

DOI: 10.1016/j.apsusc.2016.12.113

Google Scholar