[1]
Andhare, D.D., et al., Effect of Zn doping on structural, magnetic, and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B: Condensed Matter, 2020. 583: p.412051.
DOI: 10.1016/j.physb.2020.412051
Google Scholar
[2]
Mathew, D.S. and R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical engineering journal, 2007. 129(1-3): pp.51-65.
DOI: 10.1016/j.cej.2006.11.001
Google Scholar
[3]
Jadhav, S.A., et al., Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. Journal of Materials Science: Materials in Electronics, 2020. 31: pp.11352-11365.
DOI: 10.1007/s10854-020-03684-1
Google Scholar
[4]
Pardavi-Horvath, M., Microwave applications of soft ferrites. Journal of Magnetism and Magnetic Materials, 2000. 215: pp.171-183.
DOI: 10.1016/s0304-8853(00)00106-2
Google Scholar
[5]
Amiri, M., M. Salavati-Niasari, and A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Advances in colloid and interface science, 2019. 265: pp.29-44.
DOI: 10.1016/j.cis.2019.01.003
Google Scholar
[6]
Mirzaei, A., B. Hashemi, and K. Janghorban, α-Fe 2 O 3 based nanomaterials as gas sensors. Journal of Materials Science: Materials in Electronics, 2016. 27(4): pp.3109-3144.
DOI: 10.1007/s10854-015-4200-z
Google Scholar
[7]
Manikandan, V., et al., Fabrication of lithium substituted copper ferrite (Li-CuFe2O4) thin film as an efficient gas sensor at room temperature. Journal of Science: Advanced Materials and Devices, 2018. 3(2): pp.145-150.
DOI: 10.1016/j.jsamd.2018.03.008
Google Scholar
[8]
Ma, J., et al., Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Advanced materials, 2011. 23(9): pp.1062-1087.
DOI: 10.1002/adma.201003636
Google Scholar
[9]
Ramesh, R. and N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nanoscience And Technology: A Collection of Reviews from Nature Journals, 2010: pp.20-28.
DOI: 10.1142/9789814287005_0003
Google Scholar
[10]
Fu, Y., et al., Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Industrial & engineering chemistry research, 2012. 51(36): pp.11700-11709.
DOI: 10.1021/ie301347j
Google Scholar
[11]
Elshahawy, A., et al., Role of Cu2+ substitution on the structural and magnetic properties of Ni-ferrite nanoparticles synthesized by the microwave-combustion method. Ceramics International, 2015. 41(9): pp.11264-11271.
DOI: 10.1016/j.ceramint.2015.05.079
Google Scholar
[12]
El-Sayed, A., Electrical conductivity of nickel–zinc and Cr substituted nickel–zinc ferrites. Materials Chemistry and Physics, 2003. 82(3): pp.583-587.
DOI: 10.1016/s0254-0584(03)00319-5
Google Scholar