[1]
Iqbal, S., et al., Structural, morphological, antimicrobial, and in vitro photodynamic therapeutic assessments of novel Zn+ 2-substituted cobalt ferrite nanoparticles. Results in Physics, 2019. 15: p.102529.
DOI: 10.1016/j.rinp.2019.102529
Google Scholar
[2]
Jadhav, S.A., et al., Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B. Journal of Materials Science: Materials in Electronics, 2020. 31: pp.11352-11365.
DOI: 10.1007/s10854-020-03684-1
Google Scholar
[3]
Patade, S.R., et al., Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceramics International, 2020. 46(16): pp.25576-25583.
DOI: 10.1016/j.ceramint.2020.07.029
Google Scholar
[4]
Grimes, R.W., A.B. Anderson, and A.H. Heuer, Predictions of cation distributions in AB2O4 spinels from normalized ion energies. Journal of the American Chemical Society, 1989. 111(1): pp.1-7.
DOI: 10.1021/ja00183a001
Google Scholar
[5]
Nejati, K. and R. Zabihi, Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chemistry Central Journal, 2012. 6(1): pp.1-6.
DOI: 10.1186/1752-153x-6-23
Google Scholar
[6]
Patange, S., et al., Electrical and magnetic properties of Cr 3+ substituted nanocrystalline nickel ferrite. Journal of applied physics, 2009. 106(2): p.023914.
DOI: 10.1063/1.3176504
Google Scholar
[7]
Mathew, D.S. and R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical engineering journal, 2007. 129(1-3): pp.51-65.
DOI: 10.1016/j.cej.2006.11.001
Google Scholar
[8]
Kardile, H., et al., Effect of Cd2+ doping on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films. Optik, 2020. 207: p.164462.
DOI: 10.1016/j.ijleo.2020.164462
Google Scholar
[9]
Bharati, V., et al., Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. Journal of Alloys and Compounds, 2020. 821: p.153501.
DOI: 10.1016/j.jallcom.2019.153501
Google Scholar
[10]
Andhare, D.D., et al., Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B: Condensed Matter, 2020. 583: p.412051.
DOI: 10.1016/j.physb.2020.412051
Google Scholar
[11]
Elayakumar, K., V. Sathana, and R.T. Kumar, Structural and Magnetic Characterization of Rare Earth Element Cerium-Doped Nickel Ferrite Nanoparticles (NiCe x Fe 2-x O 4) by Sol-Gel Method with Antibacterial Activity. Journal of Superconductivity and Novel Magnetism, 2020: pp.1-8.
DOI: 10.1007/s10948-020-05475-5
Google Scholar
[12]
Rahman, A., et al., Fabrication of Ce3+ substituted nickel ferrite-reduced graphene oxide heterojunction with high photocatalytic activity under visible light irradiation. Journal of hazardous materials, 2020. 394: p.122593.
DOI: 10.1016/j.jhazmat.2020.122593
Google Scholar
[13]
1Han, C., et al., Synthesis and Self-Cleaning Property of TiO2 Thin Film Doping with Fe3+, Al3+, Ce3+ Ions. Journal of nanoscience and nanotechnology, 2020. 20(7): pp.4084-4091.
Google Scholar
[14]
B.A. Patil et al., Synthesis, characterizations and investigations of magnetic and Mossbauer properties of Ti doped Nickel ferrite nanoparticles. International journal of scientific and technology research, 2012 1(1).
Google Scholar