[1]
E. Greenawald, W. Bailey, E. Bellinger, K. Campbell, & Y. S. Ham. Synthesis and characterization of advanced materials. (2001) Geo-centers inc Newton centre, MA.
DOI: 10.21236/ada389684
Google Scholar
[2]
V. Adimule, S.S. Nandi SS, B.C. Yallur BC, N. Shaikh N. CNT/graphene-assisted flexible thin-film preparation for stretchable electronics and superconductors. In Sensors for Stretchable Electronics in Nanotechnology. (2021) 89-103.
DOI: 10.1201/9781003123781-7
Google Scholar
[3]
B. C. Yallur Vinayak Adimule, Santosh S. Nandi. Devices and Sensors Based on Additively Manufactured Shape-Memory of Hybrid Nanocomposites. Muni Raj Maurya et al. (Eds): Shape Memory Composites Based on Polymers and Metals for 4D Printing, (2022) 978-3-030-94113-0, 504144_1_En.
DOI: 10.1007/978-3-030-94114-7_15
Google Scholar
[4]
X. Chen, Y. Lou, S. Dayal, X. Qiu, R. Krolicki, C. Burda, C. & J. Becker. Doped semiconductor nanomaterials. Journal of nanoscience and nanotechnology, 5(9), (2005) 1408-1420.
DOI: 10.1166/jnn.2005.310
Google Scholar
[5]
D. S. Dhawale, A. Ali, & A. C. Lokhande. Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review. Sustainable Energy & Fuel. 3(6) (2019) 1365-1383.
DOI: 10.1039/c9se00040b
Google Scholar
[6]
S. A. Pillai, & M. A. Green. Plasmonics for photovoltaic applications. Solar Energy Materials and Solar Cells. 94(9) (2010) 1481-1486.
DOI: 10.1016/j.solmat.2010.02.046
Google Scholar
[7]
V. M. Adimule, J.G. Manjunath, S. Rajendrachari. Optical, morphological and dielectric properties of novel Zr 0.5 Sr 0.4 Gd2O3 nanostructure for capacitor applications. Физикa и тexнoлoгии пepcпeктивныx мaтepиaлoв–(2021).
Google Scholar
[8]
X. Yang, Y. Yuan, Z. Dai, F. Liu, & J. Huang. Optical property and adsorption isotherm models of glucose sensitive membrane based on prism SPR sensor. Sensors and Actuators B: Chemical, 237, (2016) 150-158.
DOI: 10.1016/j.snb.2016.06.090
Google Scholar
[9]
Rajendrachari, S., & B E, K. Biosynthesis of silver nanoparticles using leaves of Acacia melanoxylon and their application as dopamine and hydrogen peroxide sensors. Physical Chemistry Research, 8(1), (2020) 1-18.
Google Scholar
[10]
Jayaprakash, G. K., Swamy, B. K., Rajendrachari, S., Sharma, S. C., & Flores-Moreno, R. Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications. Journal of Molecular Liquids, 334, (2021) 116348.
DOI: 10.1016/j.molliq.2021.116348
Google Scholar
[11]
Rajendrachari, S., Kamacı, Y., Taş, R., Ceylan, Y., Bülbül, A. S., Uzun, O., & Karaoğlanlı, A. Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method. Physical Chemistry Research, 7(4), (2019) 799-812.
Google Scholar
[12]
Rajendrachari, S., YILMAZ, V. M., Karaoglanli, A. C., & Uzun, O. Investigation of activation energy and antibacterial activity of CuO nano-rods prepared by Tilia Tomentosa (Ihlamur) leaves. Moroccan Journal of Chemistry, 8(2), (2020) 8-2.
Google Scholar
[13]
Reddy, S., Swamy, B. K., Aruna, S., Kumar, M., Shashanka, R., & Jayadevappa, H. Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid. Chem Sens, (2012) 2(1).
Google Scholar
[14]
Avar, B., Panigrahi, M., Soguksu, A. K., Rajendrachari, S., & Gundes, A. Photocatalytic Activity of Soft Magnetic Fe80− xCoxZr10Si10 (x= 0, 40, and 80) Nanocrystalline Melt-Spun Ribbons. Topics in Catalysis, (2022), 1-10.
DOI: 10.1007/s11244-022-01569-7
Google Scholar
[15]
Kiran, K. S., Shashanka, R., & Lokesh, S. V. Enhanced Photocatalytic Activity of Hydrothermally Synthesized Perovskite Strontium Titanate Nanocubes. Topics in Catalysis, (2022) 1-10.
DOI: 10.1007/s11244-021-01558-2
Google Scholar
[16]
Rajendrachari, S., & Ramakrishna, D. Functionalized nanomaterial-based electrochemical sensors: A sensitive sensor platform. In Functionalized Nanomaterial-Based Electrochemical Sensors (2022) 3-25.
DOI: 10.1016/b978-0-12-823788-5.00010-7
Google Scholar
[17]
Mahale, R. S., Shashanka, R., Vasanth, S., & Vinaykumar, R. Voltammetric Determination of Various Food Azo Dyes Using Different Modified Carbon Paste Electrodes. Biointerface Research Applied Chemistry, 12(4), (2022), 4557.
DOI: 10.33263/briac124.45574566
Google Scholar
[18]
V. Adimule, B. C. Yallur, K. Sharma Studies on crystal structure morphology optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures. J Opt. (2021) https://doi.org/10.1007/s12596-021-00746-3.
DOI: 10.1007/s12596-021-00746-3
Google Scholar
[19]
A. K. Singh, V. Viswanath, V. C. Janu. Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. Journal of Luminescence, 129(8), (2009) 874-878.
DOI: 10.1016/j.jlumin.2009.03.027
Google Scholar
[20]
V. Adimule, B. C. Yallur, S.R. Batakurki, & A. H. J.Gowda. Microwave Assisted Synthesis of Cr doped Gd2O3 Nanostructures and Investigation on Morphology, Optical, Photoluminescence Properties. Nanoscience and Technology: An International Journal.
DOI: 10.1615/nanoscitechnolintj.2021039643
Google Scholar
[21]
V. Adimule, B. C. Yallur, M. ChallA, R.S. Joshi. Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon (2021) 7:e08541.
DOI: 10.1016/j.heliyon.2021.e08541
Google Scholar
[22]
V. Adimule, D. Bhowmik, A. Suryavanshi. Synthesis, characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties. In IOP Conference Series: Materials Science and Engineering (Vol. 577, No. 1, (2019) 012032.
DOI: 10.1088/1757-899x/577/1/012032
Google Scholar
[23]
N. M. Shaikh, V. Adimule, G. B Bagihalli, R. S Keri. A novel mixed Ag–Pd nanoparticles supported on SBA silica through [DMAP-TMSP-DABCO] OH basic ionic liquid for Suzuki coupling reaction. Topics in Catalysis. (2022). https://doi.org/10.1007/s11244-022-01586-6.
DOI: 10.1007/s11244-022-01586-6
Google Scholar
[24]
Pai M, M., Batakurki, S.R., Yallur, B.C. et al. Green Synthesis of Chitosan Supported Magnetic Palladium Nanoparticles Using Epiphyllum oxypetalum Leaf Extract (Pd-CsEo/Fe3O4 NPs) as Hybrid Nanocatalyst for Suzuki–Miyaura Coupling of Thiophene. Top Catal. (2022). https://doi.org/10.1007/s11244-022-01576-8.
DOI: 10.1007/s11244-022-01576-8
Google Scholar
[25]
S.R. Batakurki, V. Adimule, M.M. Pai, E. Ahmed, P. Kendrekar. Synthesis of Cs-Ag/Fe2O3 Nanoparticles Using Vitis labrusca Rachis Extract as Green Hybrid Nanocatalyst for the Reduction of Arylnitro Compounds.Topics in Catalysis, (2022) 1-14.
DOI: 10.1007/s11244-022-01593-7
Google Scholar
[26]
D. Bhowmik and S. S. Nandi, V. Adimule, B. C. Yallur. A Modified Nanostructured Gd-WO3, Sensing Interface Morphology, their Voltammetric Determination and Applications in Advanced Energy Storage Devices, Voltametry for Sensing Applications. (2022). ISBN 978-981-5039-71-1.
DOI: 10.2174/9789815039719122010007
Google Scholar
[27]
P. C. Ray. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chemical reviews, 110(9), (2010) 5332-5365.
DOI: 10.1021/cr900335q
Google Scholar
[28]
Keri, R., Patil, M., Brahmkhatri, V.P. et al. Copper (II)-β-Cyclodextrin Promoted Kabachnik-Fields Reaction: An Efficient, One-Pot Synthesis of α-Aminophosphonates. Top Catal. (2022). https://doi.org/10.1007/s11244-021-01556-4.
DOI: 10.1007/s11244-021-01556-4
Google Scholar
[29]
L.E. Brus, J. Phys. Chem. 90 (1986) 2555, Z.L. Wang et al. (Eds.), Handbook of Nanophase and Nanostuctured Materials—Materials Synthesis and Applications (I), Tsinghua University Press and Kluwer Academic/Plenum Publishers, (2002).
Google Scholar
[30]
Pai, M.M., Yallur, B.C., Batakurki, S. et al. Facile synthesis of chitosan-zno-α-fe2o3 as hybrid nanocatalyst and their application in nitrothiopheneacetate reduction and cyclization of aminothiopheneacetate. top catal (2022). https://doi.org/10.1007/s11244-021-01544-8.
DOI: 10.1007/s11244-021-01544-8
Google Scholar
[31]
S. Mohan Bhagyaraj, O.S. Oluwafemi, Nanotechnology: the science of the invisible, in: Synthesis of Inorganic Nanomaterials (2018), p.1–18, https://doi.org/10.1016/b978-0-08-101975-7.00001-4.
DOI: 10.1016/b978-0-08-101975-7.00001-4
Google Scholar
[32]
S. A. Pillai & M. A. Green, M. A. Plasmonics for photovoltaic applications. Solar Energy Materials and Solar Cells, 94(9) (2010).1481-1486.
DOI: 10.1016/j.solmat.2010.02.046
Google Scholar
[33]
S. Zeng, D. D. Baillargeat, H. P. Ho, K. T. Yong. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews, 43(10), (2014) 3426-3452.
DOI: 10.1039/c3cs60479a
Google Scholar
[34]
C. Sönnichsen, B. M. Reinhard, J. Liphardt, & Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature biotechnology, 23(6), (2005) 741-745.
DOI: 10.1038/nbt1100
Google Scholar
[35]
B.Wang, W. Zhang, K.Yang, T. Liao, F. Li, Y. Cui, Y. & B. Liu,. Metal dopants adjusted perovskite stannates: Conductivity and optical properties. Ceramics International, 44(13), (2018) 16051-16057.
DOI: 10.1016/j.ceramint.2018.06.046
Google Scholar
[36]
V. Adimule. Synthesis, characterization of Sr-Gd nanocomposites doped with zirconium possessing electrical and optical properties. In: AIP conference proceedings Vol. 1989, No. 1, (2018) 030001.
DOI: 10.1063/1.5047719
Google Scholar
[37]
V. Adimule V, D. Bhowmik D, A. Suryavanshi Synthesis, characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties. In: IOP conference series: materials science and engineering Vol. 577, No. 1, (2019) 012032.
DOI: 10.1088/1757-899x/577/1/012032
Google Scholar
[38]
V. Adimule, P. Banakar, V. H. Naik. Preparation, characterization and optical properties of chromium oxide and yttrium nanocomposites. In: AIP conference proceedings (Vol. 1989, No. 1, (2018) 020001.
DOI: 10.1063/1.5047677
Google Scholar
[39]
V. Adimule, P. Vageesha, G. Bagihalli, D. Bowmik, H. J. Adarsha HJ Synthesis, characterization of hybrid nanomaterials of strontium, yttrium, copper doped with indole Schiff base derivatives possessing dielectric and semiconductor properties. In emerging research in electronics, computer science and technology. Springer, Singapore, (2019), 1131–1140.
DOI: 10.1007/978-981-13-5802-9_97
Google Scholar
[40]
V. Adimule, A. Suryavanshi, B. C. Yallur, S.S. Nandi A facile synthesis of poly (3-octyl thiophene): Ni0 4Sr0 6TiO3 hybrid nanocomposites for solar cell applications. Macromol Symp 392(1) (2020), 2000001–2000007.
DOI: 10.1002/masy.202000001
Google Scholar
[41]
V. Adimule, B. C. Yallur, D. Bhowmik & A. H. Gowda. Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for Low Cost Optoelectronics Applications. Transactions on Electrical and Electronic Materials, (2021) 1-16.
DOI: 10.1007/s42341-021-00348-7
Google Scholar
[42]
A. Suryavanshi, V. Adimule, S. S.Nandi. Synthesis, impedance, and current-voltage characteristics of strontium-manganese titanate hybrid nanoparticles. Macromol Symp 392(1) (2020), 2000002.
DOI: 10.1002/masy.202000002
Google Scholar
[43]
V. Adimule, B. C. Yallur , A. H. J. Gowda. Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures Anal. Bioanal. Electrochem., (2022).Vol. 14, No. 1, 1-17.
Google Scholar
[44]
A. Vinayak, M. G. Revaigh, H. J. Adarsha Synthesis and fabrication of y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J Mater Eng Perform 29,(2020) , 4–5.
DOI: 10.1007/s11665-020-04979-4
Google Scholar
[45]
V. Adimule, D. Bhowmik, A.H. Gowda, A. H. Morphology, Characterization, and Gas Sensor Properties of Sr Doped WO3 Thin Film Nanostructures. In Analytical and Bioanalytical Electrochemistry,. Vol. 400, No. 1, (2021) 2100065.
DOI: 10.1002/masy.202100065
Google Scholar
[46]
S. S. Nandi, A. Suryavanshi, V. Adimule, B. C. Yallur Fabrication of novel rare earth doped ionic perovskite nanomaterials of Sr0. 5, Cu0. 4, Y0. 1 and Sr0. 5 and Mn0. 5 for high power efficient energy harvesting photovoltaic cells. In: AIP conference proceedings Vol. 2274, No. 1, (2020) 020005.
DOI: 10.1063/5.0022450
Google Scholar
[47]
V. Adimule, S. S. Nandi, Adarsha HJ. A facile synthesis of Cr doped WO3 nanostructures, study of their current-voltage, power dissipation and impedance properties of thin films. J Nano Res (2021), 67:33–42.
DOI: 10.4028/www.scientific.net/jnanor.67.33
Google Scholar
[48]
V. Adimule, B. C. Yallur, K. Sharma, K. Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures. Journal of Optics, (2021) 1-11.
DOI: 10.1007/s12596-021-00746-3
Google Scholar
[49]
V. Adimule, V., B. C. Yallur. & R. Keri. Studies on Synthesis, Characterization of Smx ZnO:CoO Nanocomposites and Its Effect on Photo Catalytic Degradation of Textile Dyes. Top Catal (2022). https://doi.org/10.1007/s11244-022-01574-w.
DOI: 10.1007/s11244-022-01574-w
Google Scholar
[50]
V. Adimule, B. Yallur, Gowda Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures. 14(1) (2022) 1-17.
Google Scholar
[51]
Lapham, D. P., and A. C. C. Tseung. The effect of firing temperature, preparation technique and composition on the electrical properties of the nickel cobalt oxide series Ni x Co1− x O y." Journal of materials science 39, no. 1 (2004) 251-264.
DOI: 10.1023/b:jmsc.0000007751.14703.4b
Google Scholar
[52]
Shashanka, R. Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. J IRAN CHEM SOC 18, (2021), 415–427 (2021). https://doi.org/10.1007/s13738-020-02037-3.
DOI: 10.1007/s13738-020-02037-3
Google Scholar
[53]
Shashanka, R., Taslimi, P., Karaoglanli, A. C., Uzun, O., Alp, E., & Jayaprakash, G. K. Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arab J Chem 14, (2021), 103180.
DOI: 10.1016/j.arabjc.2021.103180
Google Scholar
[54]
Shashanka, R., Esgin, H., Yilmaz, V. M., & Caglar, Y. Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. Journal of Science: Advanced Materials and Devices, 5(2), (2020), 185-191.
DOI: 10.1016/j.jsamd.2020.04.005
Google Scholar
[55]
K.F. Wadekar, K. R. Nemade, S.A. Waghuley, Chemical synthesis of cobalt oxide (Co3O4) nanoparticles using coprecipitation method, Res. J. Chem. Sci. 7 (2017) 53–55.
Google Scholar
[56]
V. Adimule, S. S. Nandi, B. C. Yallur, Debdas Bhowmik, and Adarsha Haramballi Jagadeesha. Optical, structural and photoluminescence properties of Gd x SrO: CdO nanostructures synthesized by Co precipitation method., Journal of Fluorescence 31, no. 2 (2021): 487-499.
DOI: 10.1007/s10895-021-02683-7
Google Scholar
[57]
J. Tauc, Radu Grigorovici, and Anina Vancu. Optical properties and electronic structure of amorphous germanium., physica status solidi (b) 15, no. 2 (1966): 627-637.
DOI: 10.1002/pssb.19660150224
Google Scholar
[58]
V. Adimule, S.S. Nandi, & A. H. Jagadeesha Gowda. A Facile Synthesis of Gadolinium Titanate (GdTiO 3) Nanomaterial and Its Effect in Enhanced Current-Voltage Characteristics of Thin Films. In Techno-Societal (2020) 69-78.
DOI: 10.1007/978-3-030-69925-3_7
Google Scholar
[59]
Bhargava, Richa, Shakeel Khan, Naseem Ahmad, and Mohd Mohsin Nizam Ansari. Investigation of structural, optical and electrical properties of Co3O4 nanoparticles., In AIP conference proceedings, vol. 1953, no. 1, (2018) 030034.
DOI: 10.1063/1.5032369
Google Scholar
[60]
V. Adimule, S.S. Nandi, B. C. Yallur, D. Bhowmik, & A.H. Jagadeesha. Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics. Materials Today Chemistry, 20, (2021) 100438.
DOI: 10.1016/j.mtchem.2021.100438
Google Scholar
[61]
E. Cook, R. Fong, J. Horrocks, D. Wilkinson, R. Speller, R. Energy dispersive X-ray diffraction as a means to identify illicit materials: A preliminary optimisation study. Applied Radiation and Isotopes, 65(8), (2007) 959-967.
DOI: 10.1016/j.apradiso.2007.02.010
Google Scholar
[62]
Lakra, Rajan, Rahul Kumar, Parasanta Kumar Sahoo, Dhirendranath Thatoi, and Ankur Soam. A mini-review: Graphene based composites for supercapacitor application., Inorganic Chemistry Communications 133 (2021): 108929.
DOI: 10.1016/j.inoche.2021.108929
Google Scholar
[63]
Miranda, M. A. R., & Sasaki, J. M. The limit of application of the Scherrer equation. Acta Crystallographica Section A: Foundations and Advances, 74(1), (2018), 54-65.
Google Scholar
[64]
V. Adimule, S.S. Nandi, & A. H. Jagadeesha Gowda. A Facile Synthesis of Gadolinium Titanate (GdTiO 3) Nanomaterial and Its Effect in Enhanced Current-Voltage Characteristics of Thin Films. In Techno-Societal (2020) 69-78.
DOI: 10.1007/978-3-030-69925-3_7
Google Scholar
[65]
Li, K., Shucai, G., Guangyan, H., & Jilin, Z. (2007). Relationship between crystal structure and luminescence properties of (Y0. 96-x Lnx Ce0. 04) 3 Al5 O12 (Ln= Gd, La, Lu) phosphors. Journal of rare earths, 25(6), (2007) 692-696.
DOI: 10.1016/s1002-0721(08)60008-3
Google Scholar
[66]
Madhuri, S. N., Hemalatha, K. S., & Rukmani, K. Preparation and investigation of suitability of gadolinium oxide nanoparticle doped polyvinyl alcohol films for optoelectronic applications. Journal of Materials Science: Materials in Electronics, (2019) 30(9), 9051-9063.
DOI: 10.1007/s10854-019-01237-9
Google Scholar
[67]
Wen, W., Yawen, X., Yin, J., & Wang, Z. Gadolinium Complex of Schiff Base as Efficient Suppression Ratio for Hydroxyl Radical. Asian Journal of Chemistry, (2013) 25(15).
DOI: 10.14233/ajchem.2013.14725
Google Scholar
[68]
Adjimi, A., Aida, M. S., Attaf, N., & Ocak, Y. S. Gadolinium doping effect on SnO2 thin films optical and electrical properties. Materials Research Express, (2019) 6(9), 096405.
DOI: 10.1088/2053-1591/ab2a8c
Google Scholar
[69]
Dhir, R. Synthesis, characterization and applications of Gadolinium doped ZnS nanoparticles as photocatalysts for the degradation of dyes (Malachite Green and Rhodamine B) and as antioxidants. Chemical Physics Impact, (2021) 3, 100027.
DOI: 10.1016/j.chphi.2021.100027
Google Scholar
[70]
Manigandan, R., Giribabu, K., Suresh, R., Munusamy, S., Muthamizh, S., Dhanasekaran, T., ... & Narayanan, V. Synthesis, growth and photoluminescence behaviour of Gd 2 O 2 SO 4: Eu 3+ nanophosphors: the effect of temperature on the structural, morphological and optical properties. RSC Advances, (2015), 5(10), 7515-7521.
DOI: 10.1039/c4ra13897j
Google Scholar
[71]
Rasid, A., Fadzilah, N., Mohd Tawil, S. N., Che Ani, N., & Sahdan, M. Z. Effect of Crystallite Size on the Optical and Structural Properties of Gadolinium-Doped Zinc Oxide. In Advanced Materials Research (2016) Vol. 1133, pp.414-418. Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/amr.1133.414
Google Scholar