Radish (Raphanus sativus) Leaves Mediated CuO-NiO Nanocomposite for Photocatalytic Activity

Article Preview

Abstract:

Fundamental and applied research depends on the removal of organic toxic effluents from textile industries. Photocatalytic dye degradation of CuO-NiO nanocomposite has been studied against methylene blue (MB) dye. CuO-NiO nanocomposite has been prepared by hydrothermal method using radish (Raphanus sativus) leaves as green fuel. Prepared composite nanoparticles (NPs) are characterized by XRD, FTIR, UV-DRS and SEM with EDS for the elemental and structural information. XRD data indicated the formation of monoclinic and hexagonal crystallite structures for CuO and NiO respectively. FTIR confirmed the presence of Cu - O and Ni - O molecular vibrations. Surface morphology and elemental composition of composite was analysed by SEM with EDS. CuO-NiO nanocomposite is capable to degrade 70 % of methylene blue (MB) dye in 180 min under UV light interactions. Recyclability is also good even after 4 cycles of degradation experiment for the CuO-NiO composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-55

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Senobari, A. Nezamzadeh-Ejhieh, comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles designing the experiments, J. Mol. Liq. 261 (2018) 208–217.

DOI: 10.1016/j.molliq.2018.04.028

Google Scholar

[2] H. Sudrajat, S. Babel, H. Sakai, S. Takizawa, Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO2, J. Environ. Manage. 165 (2016) 224-234.

DOI: 10.1016/j.jenvman.2015.09.036

Google Scholar

[3] Ai. Imran Vaizogullar, A Balci, M. Ugulu, Synthesis of ZrO2 and ZrO2/SiO2 particles and photocatalytic degradation of methylene blue, Indian J. Chem. 54 (2015) 1434-1439.

Google Scholar

[4] Udayabhanu, V. Pavitra, M. Shivanna, F. A. Alharthi, B. M. Praveen, Y. T. Ravikiran, K. Byrappa, G. Nagaraju, High capacitive h‐MoO3 hexagonal rods and its applications towards lithium ion battery, humidity and nitrite sensing, Int. J Energy Res. 45 (2021) 17315-17326.

DOI: 10.1002/er.6506

Google Scholar

[5] Shashanka, D. Chaira, B.E. Kumara Swamy, Electrocatalytic Response of Duplex and Yittria Dispersed Duplex Stainless Steel Modified Carbon Paste Electrode in Detecting Folic Acid Using Cyclic Voltammetry, Int. J. Electrochem. Sci. 10 (2015) 5586–5598.

Google Scholar

[6] Shashanka, D. Chaira, B.E. Kumara Swamy, Electrochemical investigation of duplex stainless steel at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid, International Journal of Scientific & Engineering Research. 6 (2015) 1863–1871.

Google Scholar

[7] Sathish Reddy, B. E. Kumara Swamy, S. Aruna, Mohan Kumar, R. Shashanka, H. Jayadevappa. Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid. Chemical Sensors, 2012, 2: 7.

Google Scholar

[8] R. Shashanka, B.E. Kumara Swamy, Sathish Reddy, Debasis Chaira, Synthesis of Silver Nanoparticles and their Applications Bioanal. Electrochem. 5 (2013) 455–466.

Google Scholar

[9] Shashanka, D. Chaira, B.E. Kumara Swamy, Fabrication of yttria dispersed duplex stainless steel electrode to determine dopamine, ascorbic and uric acid electrochemically by using cyclic voltammetry, Int. J. Sci. & Engg. Res. 7 (2016) 1275-1285.

Google Scholar

[10] V. Adimule, B.C. Yallur, D. Bhowmik & A.H. Gowda (2021) Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for Low Cost Optoelectronics Applications. Transactions on Electrical and Electronic Materials 1-16. https://doi.org/10.1007/s42341-021-00348-7.

DOI: 10.1007/s42341-021-00348-7

Google Scholar

[11] V. Adimule, D. Bhowmik & A. Suryavanshi, Synthesis characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties In IOP Conference Series: Materials Science and Engineering 577 No 1:p.012032 IOP Publishing. https://doi.org/10.1088/1757-899X/577/1/012032.

DOI: 10.1088/1757-899x/577/1/012032

Google Scholar

[12] V. Adimule, J.G. Manjunath, & S. Rajendrachari (2021) Optical morphological and dielectric properties of novel Zr0.5Sr04Gd2O3 nanostructure for capacitor applications Физика и технологии перспективных материалов–(2021).

Google Scholar

[13] V. Adimule, P. Banakar, & V.H. Naik (2018) Preparation characterization and optical properties of chromium oxide and yttrium nanocomposites In AIP Conference Proceedings (Vol 1989 No 1 p.020001) AIP Publishing LLC. https://doi.org/10.1063/1.5047677.

DOI: 10.1063/1.5047677

Google Scholar

[14] V Adimule, P. Vageesha, G. Bagihalli, D. Bowmik & H.J. Adarsha Synthesis characterization of hybrid nanomaterials of strontium yttrium copper doped with indole schiff base derivatives possessing dielectric and semiconductor properties. In Emerging Research in Electronics Computer Science and Technology, Springer Singapore., (2019) 1131-1140 https://doi.org/10.1007/978-981-13-5802-9_97.

DOI: 10.1007/978-981-13-5802-9_97

Google Scholar

[15] V. Pavitra, B. M. Praveen, G. Nagaraju, R. Shashanka, Energy Storage, Photocatalytic and Electrochemical Nitrite Sensing of Ultrasound-Assisted Stable Ta2O5 Nanoparticles, Topics in Catalysis (2022) https://doi.org/10.1007/s11244-021-01553-7.

DOI: 10.1007/s11244-021-01553-7

Google Scholar

[16] T.H. Tran, V.T. Nguyen, Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review. Int. Scholarly Research Notices (2014) 1–14.

DOI: 10.1155/2014/856592

Google Scholar

[17] K. Kannan, D. Radhika Nikolova, P.S. Maria, S. Kishor Kumar, H. Mahdizadeh, V. Urvashi, Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorganic Chem. Commun. 113 (2020) 107755.

DOI: 10.1016/j.inoche.2019.107755

Google Scholar

[18] L. Arun, C. Karthikeyan, D. Philip, C. Unni, Optical, magnetic, electrical, and chemo-catalytic properties of bio-synthesized CuO/NiO nanocomposites, J. Phys. Chem. Solids (2019) 109155.

DOI: 10.1016/j.jpcs.2019.109155

Google Scholar

[19] N.M. Mahmoodi, Z Hosseinabadi-Farahani, F. Bagherpour, M.R. Khoshrou, H. Chamani, F. Forouzeshfar, Synthesis of CuO–NiO nanocomposite and dye adsorpton modeling using artificial neural network, Desalination and Water Treat. (2015) 5717220–17229.

DOI: 10.1080/19443994.2015.1086895

Google Scholar

[20] S. Senobari, A. Nezamzadeh-Ejhieh, A comprehensive study on the enhanced photocatalytic activity of CuO-NiO nanoparticles: Designing the experiments. J. Mol. Liq. 261 (2018) 208-217.

DOI: 10.1016/j.molliq.2018.04.028

Google Scholar

[21] V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik & A. H. Jagadeesha, Optical structural and photoluminescence properties of GdxSrO: CdO nanostructures synthesized by co precipitation Method, J. Fluoresc. 31 (2021) 487-499.

DOI: 10.1007/s10895-021-02683-7

Google Scholar

[22] V. Adimule, B.C. Yallur, D. Bhowmik, & A.H.J. Gowda, Morphology structural and photoluminescence properties of shaping triple semiconductor YxCoO: ZrO2 nanostructures J. Mater. Sci.: Mater. Electron. 32 (2021) 2164-12181.

DOI: 10.1007/s10854-021-05845-2

Google Scholar

[23] V. Adimule, B.C. Yallur, V. Kamat & P.M. Krishna, Characterization studies of novel series of cob alt (II) nickel (II) and copper (II) complexes: DNA binding and antibacterial activity, J. Pharm. Invest. 51 (2021) 47-359.

DOI: 10.1007/s40005-021-00524-0

Google Scholar

[24] A. Vinayak, M. Sudha, A. Jagadeesha, and K. Lalita, Design, Synthesis, Characterization and Cancer Cell Growth-Inhibitory Properties of Novel Derivatives of 2-(4-Fluoro-phenyl)-5-(5-Aryl Substituted-1, 3, 4-Oxadiazol-2-yl) Pyridine, J. Pharm. Res. Int. 7 (2015) 34-43.

DOI: 10.9734/bjpr/2015/15486

Google Scholar

[25] V. Adimule, M. Sudha, K. Lalita, Prakash Kumar Rao, Novel substituted phenoxy derivatives of 2-chloro-n-{5-[2-(4-methoxy-phenyl)-pyridin-3-yl] - [1,3,4] thiadiazol-2-yl}-acetamides: synthesis, characterization and invitro anticancer properties, J. Pharm. Chem. Biol. Sci. 2 (2014) 130-137.

Google Scholar

[26] R. Shashanka, A.C. Karaoglanli, Y. Ceylan, O. Uzun, A fast and robust approach for the green synthesis of spherical Magnetite (Fe3O4) nanoparticles by Tilia Tomentosa (Ihlamur) leaves and its antibacterial studies, Pharm. Sci. 26(2) (2020) 175-183.

DOI: 10.34172/ps.2020.5

Google Scholar

[27] R. Shashanka, Investigation of optical and thermal p roperties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract, J. Iran. Chem. Soc. 18 (2) (2021) 415-427.

DOI: 10.1007/s13738-020-02037-3

Google Scholar

[28] Shashanka, P. Taslimi, A.C. Karaoglanli, O. Uzun, E. Alp, G.K. Jayaprakash, Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method, Arab. J. Chem.14 (6) (2021) 103180.

DOI: 10.1016/j.arabjc.2021.103180

Google Scholar

[29] G.K. Jayaprakash, B.E. Kumara Swamy, R. Shashanka, S.C. Sharma, Roberto Flores-Moreno, Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications, J. Mol. Liq. 334 (2021) 116348.

DOI: 10.1016/j.molliq.2021.116348

Google Scholar

[30] R. Shashanka, B.E. Kumara Swamy, Sathish Reddy, D. Chaira, Synthesis of Silver Nanoparticles and their Applications, Bioanal. Electrochem. 5 (2013) 455–466.

Google Scholar

[31] M.P.G Rosa and L.P. Rosalinda, Raphanus sativus (Radish): Their Chemistry and Biology, The Scientific World journal 4 (2004) 811–837.

Google Scholar

[32] Udayabhanu, V. Pavitra, S.C. Sharma, G. Nagaraju Epigallocatechin gallate (EGCG)–assisted combustion synthesis of V2O5 nanoparticles for Li-ion battery, Ionics 26 (2020) 1203–1210.

DOI: 10.1007/s11581-019-03326-5

Google Scholar

[33] M. Huang, F. Li, Zhang, X. Yu, B. Li, X. Gao, Hierarchical NiO nanoflake coated CuO flower core–shell nanostructures for supercapacitor. Ceram. Int. 40 (2014) 5533–5538.

DOI: 10.1016/j.ceramint.2013.10.143

Google Scholar

[34] M.A. Kaid Preparation, Microstructural and Optical Characterization of NiO Nanoparticles, J. Phys. Sci. 4(8) (2014) 1100-1109.

DOI: 10.9734/psij/2014/11068

Google Scholar

[35] I.N. Bharti, B.K. Subhash, M.C. Arti, V.J. Dipti synthesis and characterization of nickel oxide nanoparticles with wide band gap energy prepared via chemical precipitation method, Int. J. Cur. Engg. Sci. Res. 6 (2019) 2394-0697.

Google Scholar

[36] P.K. Raul, S.Senapati, Sahoo, K.S. Ashish, M.U. Iohborlang, R.D. Rashmi Thakur, J.T. Ashim, V. Veer, CuO nanorods: a potential and efficient adsorbent in water purification, RSC Adv. 4 (2014) 40580–40587.

DOI: 10.1039/c4ra04619f

Google Scholar

[37] V. Helan, J. Joseph Prince, Naif Abdullah Al-Dhabi, Naif Abdullah Al-Dhabi, Mariadhas Valan Arasu, A. Ayeshmarium, G. Madhumitra, Selvaraj Mohana Roopan, M. Jayachandran, Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis, Results phys. 6 (2016) 712-718.

DOI: 10.1016/j.rinp.2016.10.005

Google Scholar

[38] S. Sagadevan, K. Pal, Z.Z. Chowdhury, Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method, J Mater Sci: Mater. Electron. 28 (2017) 12591–12597.

DOI: 10.1007/s10854-017-7083-3

Google Scholar

[39] V. Pavitra, Udayabhanu, R. Viswanatha, B.M. Praveen, G. Nagaraju, Sonochemical synthesis of SnO2–CuO nanocomposite: diverse applications on Li-ion battery, electrochemical sensing and photocatalytic activity, J Mater sci: Mater. Electron. 31 (2020) 8737-8749.

DOI: 10.1007/s10854-020-03408-5

Google Scholar

[40] T.T. Truong, T.T. Pham, T.T.T. Truong, T.D. Pham, Synthesis, characterization of novel ZnO/CuO nanoparticles, and the applications in photocatalytic performance for rhodamine B dye degradation, Environ Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-17106-0.

DOI: 10.1007/s11356-021-17106-0

Google Scholar

[41] M.F. Parveen, A. Amala Jeya Ranchani, V. Parthasarathy & R. Anbarasan, Synthesis, characterization and catalytic applications of CuO–NiO bimetallic oxide nanoparticles towards the reduction of hazardous pollutants, derivative preparation and cross-linking reaction, Appl. Nanosci. (2022) https://doi.org/10.1007/s13204-021-02326-0.

DOI: 10.1007/s13204-021-02326-0

Google Scholar