[1]
Reddy Sathish, B. E. Kumara Swamy, S. Aruna, M. Kumar, R. Shashanka, and H. Jayadevappa. Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid. Chem. Sens. 2, 1 (2012).
Google Scholar
[2]
Shashanka R., D. Chaira, and Kumara Swamy B. E. Effect of Y2O3 nanoparticles on corrosion study of spark plasma sintered duplex and ferritic stainless-steel samples by linear sweep voltammetric method. Archives of Metallurgy and Materials. (2018).
Google Scholar
[3]
Rajendrachari Shashanka, Yasemin Kamacı, Recep Taş, Yusuf Ceylan, Ali Savaş Bülbül, Orhan Uzun, and Abdullah Cahit Karaoğlanlı. Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method." Physical Chemistry Research. 7, 4 (2019) 799-812.
Google Scholar
[4]
Rajendrachari S., and K. B. Ceylan. The activation energy and antibacterial investigation of spherical Fe3O4 nanoparticles prepared by Crocus sativus (Saffron) flowers. Biointerface Res. Appl. Chem. 10 (2020) 5951-5959.
DOI: 10.33263/briac104.951959
Google Scholar
[5]
Shashanka R., and B. E. Kumara Swamy. Simultaneous electro-generation and electro-deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application. SN Applied Sciences. 2, 5 (2020) 1-10.
DOI: 10.1007/s42452-020-2785-1
Google Scholar
[6]
Rajendrachari Shashanka, Volkan Murat YILMAZ, Abdullah Cahit Karaoglanli, and Orhan Uzun. Investigation of activation energy and antibacterial activity of CuO nano-rods prepared by Tilia Tomentosa (Ihlamur) leaves. Moroccan Journal of Chemistry. 8, 2 (2020) 8-2.
Google Scholar
[7]
Shashanka R., Halil Esgin, Volkan Murat Yilmaz, and Yasemin Caglar. Fabrication and characterization of green synthesized ZnO nanoparticle-based dye-sensitized solar cells. Journal of Science: Advanced Materials and Devices. 5, 2 (2020): 185-191.
DOI: 10.1016/j.jsamd.2020.04.005
Google Scholar
[8]
Rajendrachari Shashanka, Abdullah Cahit Karaoglanli, Yusuf Ceylan, and Orhan Uzun. A fast and robust approach for the green synthesis of spherical magnetite (Fe3O4) Nanoparticles by Tilia tomentosa (Ihlamur) leaves and its antibacterial studies. Pharmaceutical Sciences. 26, 2 (2020) 175-183.
DOI: 10.34172/ps.2020.5
Google Scholar
[9]
Shashanka R. Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. Journal of the Iranian Chemical Society. 18, 2 (2021) 415-427.
DOI: 10.1007/s13738-020-02037-3
Google Scholar
[10]
Rajendrachari Shashanka, Parham Taslimi, Abdullah Cahit Karaoglanli, Orhan Uzun, Emre Alp, and Gururaj Kudur Jayaprakash. Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arabian Journal of Chemistry. 14, 6 (2021) 103180.
DOI: 10.1016/j.arabjc.2021.103180
Google Scholar
[11]
Adimule V. M, J. G. Manjunath, and S. Rajendrachari. Optical, morphological and dielectric properties of novel zr 0.5 sr 0.4 gd2o3 nanostructure for capacitor applications. Физика и технологии перспективных материалов. (2021) 15.
Google Scholar
[12]
Adimule Vinayak, Prashanth Banakar, and Vinod H. Naik. Preparation, characterization and optical properties of chromium oxide and yttrium nanocomposites. AIP Conference Proceedings. 1989 (2018) 020001.
DOI: 10.1063/1.5047677
Google Scholar
[13]
Adimule Vinayak, P. Vageesha, Gangadhar Bagihalli, Debdas Bowmik, and H. J. Adarsha. Synthesis, Characterization of Hybrid Nanomaterials of Strontium, Yttrium, Copper Doped with Indole Schiff Base Derivatives Possessing Dielectric and Semiconductor Properties. Emerging Research in Electronics, Computer Science and Technology. (2019) 1131-1140.
DOI: 10.1007/978-981-13-5802-9_97
Google Scholar
[14]
Adimule V. Synthesis, characterization of Sr-Gd nanocomposites doped with zirconium possessing electrical and optical properties. AIP Conference Proceedings. 1989 (2018) 030001.
DOI: 10.1063/1.5047719
Google Scholar
[15]
Adimule Vinayak, Santosh S. Nandi, and H. J. Adarsha. A Facile Synthesis of Cr Doped WO3 Nanostructures, Study of their Current-Voltage, Power Dissipation and Impedance Properties of Thin Films. Journal of Nano Research. 67 (2021) 33-42.
DOI: 10.4028/www.scientific.net/jnanor.67.33
Google Scholar
[16]
Adimule Vinayak, Santosh S. Nandi, and H. J. Adarsha. A facile synthesis of Cr doped WO3 nanostructures, study of their current-voltage, power dissipation and impedance properties of thin films. Journal of Nano Research. Trans Tech Publications Ltd. 67 (2021) 33-42.
DOI: 10.4028/www.scientific.net/jnanor.67.33
Google Scholar
[17]
Adimule Vinayak, Anusha Suryavanshi, and Santosh Nandi. Synthesis, characterization and impedance studies of novel nanocomposites of gadolinium titanate. IOP Conference Series: Materials Science and Engineering. 872, 1 (2020) 012099.
DOI: 10.1088/1757-899x/872/1/012099
Google Scholar
[18]
Adimule Vinayak, Basappa C. Yallur, Sheetal R. Batakurki, Adarsha Haramballi Jagadeesha Gowda. Microwave Assisted Synthesis of Cr doped Gd2O3 Nanostructures and Investigation on Morphology, Optical, Photoluminescence Properties. Nanoscience and Technology: An International Journal. 13, 2 (2022) 45-59.
DOI: 10.1615/nanoscitechnolintj.2021039643
Google Scholar
[19]
Adimule Vinayak, Santosh S. Nandi, B. C. Yallur, and Nilophar Shaikh. CNT/graphene-assisted flexible thin-film preparation for stretchable electronics and superconductors. Sensors for Stretchable Electronics in Nanotechnology. (2021) 89-103.
DOI: 10.1201/9781003123781-7
Google Scholar
[20]
Santosh S. Nandi, Anusha Suryavanshi, Vinayak Adimule, and Basappa C. Yallur. Fabrication of novel rare earth doped ionic perovskite nanomaterials of Sr0. 5, Cu0. 4, Y0. 1 and Sr0. 5 and Mn0. 5 for high power efficient energy harvesting photovoltaic cells. AIP Conference Proceedings. 2274, 1 (2020) 020005.
DOI: 10.1063/5.0022450
Google Scholar
[21]
Santosh S. Nandi, Anusha Suryavanshi, Vinayak Adimule, and Sanjeev Reddy Maradur. Semiconductor current-voltage characteristics of some novel perovskite ionic nanocomposites of Sr0. 5, Cu0. 4, Y0. 1 and Sr0. 5, Mn0. 5 and their electronic sensor applications. AIP Conference Proceedings. 2274, 1 (2020) 020006.
DOI: 10.1063/5.0022453
Google Scholar
[22]
Adimule Vinayak, Anusha Suryavanshi, B. C. Yallur, and Santosh S. Nandi. A Facile Synthesis of Poly (3‐octyl thiophene): Ni0. 4Sr0. 6TiO3 Hybrid Nanocomposites for Solar Cell Applications. Macromolecular Symposia. 392, 1 (2020) 2000001.
DOI: 10.1002/masy.202000001
Google Scholar
[23]
Adimule Vinayak, Basappa C. Yallur, Vinutha Kamat, and P. Murali Krishna. Characterization studies of novel series of cobalt (II), nickel (II) and copper (II) complexes: DNA binding and antibacterial activity. Journal of Pharmaceutical Investigation. 51, 3 (2021) 347-359.
DOI: 10.1007/s40005-021-00524-0
Google Scholar
[24]
Zheng Shasha, Qing Li, Huaiguo Xue, Huan Pang, and Qiang Xu. A highly alkaline-stable metal oxide@ metal–organic framework composite for high-performance electrochemical energy storage. National science review. 7, 2 (2020) 305-314.
DOI: 10.1093/nsr/nwz137
Google Scholar
[25]
Alvaro Mercedes, Esther Carbonell, Belén Ferrer, Francesc X. Llabrés i Xamena, and Hermenegildo Garcia. Semiconductor behavior of a metal‐organic framework (MOF). Chemistry–A European Journal. 13, 18 (2007) 5106-5112.
DOI: 10.1002/chem.200601003
Google Scholar
[26]
Yang Suling, Mengyu Li, Ziling Guo, Ning Xia, and Lingbo Qu. Facile synthesis of Fe-MOF/rGO nanocomposite as an efficient electrocatalyst for nonenzymatic H2O2 sensing. The Journal of Electrochemical Science. 14 (2019) 7703-7716.
DOI: 10.20964/2019.08.42
Google Scholar
[27]
Chen Yu-Zhen, Zhiyong U. Wang, Hengwei Wang, Junling Lu, Shu-Hong Yu, and Hai-Long Jiang. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and Pt electronic state. Journal of the American Chemical Society. 139, 5 (2017) 2035-2044.
DOI: 10.1021/jacs.6b12074
Google Scholar
[28]
Yang Qihao, Qiang Xu, and Hai-Long Jiang. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews. 46, 15 (2017) 4774-4808.
DOI: 10.1039/c6cs00724d
Google Scholar
[29]
Yang Xinchun, Jian-Ke Sun, Mitsunori Kitta, Huan Pang, and Qiang Xu. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nature Catalysis. 1, 3 (2018) 214-220.
DOI: 10.1038/s41929-018-0030-8
Google Scholar
[30]
Zhao Shenlong, Yun Wang, Juncai Dong, Chun-Ting He, Huajie Yin, Pengfei An, and Kun Zhao. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy. 1, 12 (2016) 1-10.
DOI: 10.1038/nenergy.2016.184
Google Scholar
[31]
Min Kil Sik, and Myunghyun Paik Suh. Silver (I)− polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. Journal of American Chemical Society. 122, 29 (2000) 6834-6840.
DOI: 10.1021/ja000642m
Google Scholar
[32]
Hawxwell Samuel M, and Lee Brammer. Solvent hydrolysis leads to an unusual Cu (ii) metal–organic framework. Crystal Engineering Communication. 8, 6 (2006) 473-476.
DOI: 10.1039/b603274e
Google Scholar
[33]
Haneda Tsuyoshi, Masaki Kawano, Takahiro Kojima, and Makoto Fujita. Thermo‐to‐Photo‐Switching of the Chromic Behavior of Salicylideneanilines by Inclusion in a Porous Coordination Network. Angewandte Chemie, International Edition. 46, 35 (2007) 6643-6645.
DOI: 10.1002/anie.200700999
Google Scholar
[34]
Chen Banglin, Chengdu Liang, Jun Yang, Damacio S. Contreras, Yvette L. Clancy, Emil B. Lobkovsky, Omar M. Yaghi, and Sheng Dai. A microporous metal–organic framework for gas‐chromatographic separation of alkanes. Angewandte Chemie International. 45, 9 (2006) 1390-1393.
DOI: 10.1002/anie.200502844
Google Scholar
[35]
Adimule Vinayak, Basappa C. Yallur, Malathi, Challa, and Rajeev S. Joshi. Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon. 12 (2021) e08541.
DOI: 10.1016/j.heliyon.2021.e08541
Google Scholar
[36]
Adimule Vinayak, Santosh S. Nandi, and Adarsha Haramballi Jagadeesha Gowda. "Enhanced Power Conversion Efficiency of the P3BT (Poly-3-Butyl Thiophene) Doped Nanocomposites of Gd-TiO 3 as Working Electrode. Techno-Societal. 2020 (2021) 55-68.
DOI: 10.1007/978-3-030-69925-3_6
Google Scholar
[37]
Adimule Vinayak, Santosh S. Nandi, and Adarsha Haramballi Jagadeesha Gowda. A Facile Synthesis of Gadolinium Titanate Effect (GdTiO Enhanced 3. Techno-Societal 2020: Proceedings of the 3rd International Conference on Advanced Technologies for Societal Applications. 2 (2020) 69.
DOI: 10.1007/978-3-030-69925-3_7
Google Scholar
[38]
Adimule V, S. S. Nandi, B. C. Yallur, D. Bhowmik, and A. H. Jagadeesha. Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics. Materials Today Chemistry. 20 (2021) 100438.
DOI: 10.1016/j.mtchem.2021.100438
Google Scholar
[39]
Adimule Vinayak, Santosh S. Nandi, B. C. Yallur, Debdas Bhowmik, and Adarsha Haramballi Jagadeesha. Optical, Structural and Photoluminescence Properties of Gd x SrO: CdO Nanostructures Synthesized by Co Precipitation Method. Journal of Fluorescence. 31, 2 (2021) 487-499.
DOI: 10.1007/s10895-021-02683-7
Google Scholar
[40]
Adimule Vinayak, B. C. Yallur, Debdas Bhowmik, and Adarsha Haramballi Jagadeesha Gowda. Morphology, structural and photoluminescence properties of shaping triple semiconductor Y x CoO: ZrO 2 nanostructures. Journal of Materials Science: Materials in Electronics. 32, 9 (2021) 12164-12181.
DOI: 10.1007/s10854-021-05845-2
Google Scholar
[41]
Adimule Vinayak, Debdas Bhowmik, and Adarsha HJ Gowda. Morphology, Characterization, and Gas Sensor Properties of Sr Doped WO3 Thin Film Nanostructures. Macromolecular Symposia. 400, 1 (2021) 2100065.
DOI: 10.1002/masy.202100065
Google Scholar
[42]
Adimule Vinayak, M. G. Revaiah, and H. J. Adarsha. Synthesis and Fabrication of Y-Doped ZnO Nanoparticles and Their Application as a Gas Sensor for the Detection of Ammonia. Journal of Materials Engineering and Performance. 29, 7 (2020) 4586-4596.
DOI: 10.1007/s11665-020-04979-4
Google Scholar
[43]
Suryavanshi Anusha, Vinayak Adimule, and Santosh S. Nandi. Synthesis, Impedance, and Current–Voltage Characteristics of Strontium‐Manganese Titanate Hybrid Nanoparticles. Macromolecular Symposia. 392, 1 (2020) 2000002.
DOI: 10.1002/masy.202000002
Google Scholar
[44]
Adimule Vinayak, R. G. Revaiah, Santosh S. Nandi, and Adarsha Haramballi Jagadeesha. Synthesis, Characterization of Cr Doped TeO2 Nanostructures and its Application as EGFET pH Sensor. Electroanalysis. 33, 3 (2021) 579-590.
DOI: 10.1002/elan.202060329
Google Scholar
[45]
Adimule Vinayak, Basappa C. Yallur, and Kalpana Sharma. Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures. Journal of Optics. (2021) 1-11.
DOI: 10.1007/s12596-021-00746-3
Google Scholar
[46]
Adimule Vinayak, Debdas Bhowmik, and Anusha Suryavanshi. Synthesis, characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties. In IOP Conference Series: Materials Science and Engineering. IOP Publishing. 577, 1 (2019) 012032.
DOI: 10.1088/1757-899x/577/1/012032
Google Scholar
[47]
Nandi Santosh S., Anusha Suryavanshi, Vinayak Adimule, and Basappa C. Yallur. Super capacitor characteristics of novel rare earth perovskite nanomaterials of Sr0. 5, Cu0. 4, Y0. 1. AIP Conference Proceedings. AIP Publishing LLC. 2274, 1, (2020) 020007.
DOI: 10.1063/5.0022454
Google Scholar
[48]
Adimule Vinayak, Santosh S. Nandi, and Adarsha Haramballi Jagadeesha Gowda. A Facile Synthesis of Gadolinium Titanate (GdTiO 3) Nanomaterial and Its Effect in Enhanced Current-Voltage Characteristics of Thin Films. Techno-Societal. Springer, Cham. 2020. (2021) 69-78.
DOI: 10.1007/978-3-030-69925-3_7
Google Scholar
[49]
Adarsha, Vinayak M. Adimule Debdas Bhowmik, and Haramballi Jagadeesha. Synthesis, impedance and current-voltage spectroscopic characterization of novel gadolinium titanate nano structures. Advanced Materials Letters. 12, 6 (2021) 1-7.
DOI: 10.5185/amlett.2021.061638
Google Scholar
[50]
Yang Jian, Fengjun Zhang, Haiyuan Lu, Xun Hong, Hailong Jiang, Yuen Wu, and Yadong Li. Hollow Zn/Co ZIF particles derived from core–shell ZIF‐67@ ZIF‐8 as selective catalyst for the semi‐hydrogenation of acetylene. Angewandte Chemie. 127, 37 (2015) 11039-11043.
DOI: 10.1002/ange.201504242
Google Scholar
[51]
Yu Jia, Chao Mu, Bingyi Yan, Xinyu Qin, Chao Shen, Huaiguo Xue, and Huan Pang. Nanoparticle/MOF composites: preparations and applications. Materials Horizons. 4, 4 (2017) 557-569.
DOI: 10.1039/c6mh00586a
Google Scholar
[52]
Lian Xizhen, Yu Fang, Elizabeth Joseph, Qi Wang, Jialuo Li, Sayan Banerjee, Christina Lollar, Xuan Wang, and Hong-Cai Zhou. Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews. 46, 11 (2017) 3386-3401.
DOI: 10.1039/c7cs00058h
Google Scholar
[53]
Xiao Jia, Kaidi Diao, Zhou Zheng, and Xudong Cui. MOF-derived porous ZnO/Co3O4 nanocomposites for high performance acetone gas sensing. Journal of Materials Science: Materials in Electronics. 29, 10 (2018) 8535-8546.
DOI: 10.1007/s10854-018-8867-9
Google Scholar
[54]
Zhang Yueping, You Zhou, Yue Zhao, and Chang-jun Liu. Recent progresses in the size and structure control of MOF supported noble metal catalysts. Catalysis Today 263 (2016) 61-68.
DOI: 10.1016/j.cattod.2015.10.022
Google Scholar
[55]
Subudhi Satyabrata, Suraj Prakash Tripathy, and Kulamani Parida. Metal oxide integrated metal organic frameworks (MO@ MOF): rational design, fabrication strategy, characterization and emerging photocatalytic applications. Inorganic Chemistry Frontiers. 8, 6 (2021) 1619-1636.
DOI: 10.1039/d0qi01117g
Google Scholar
[56]
Zhang, Yufan, Xiangjie Bo, Charles Luhana, Huan Wang, Mian Li, and Liping Guo. Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chemical Communications. 49, 61 (2013) 6885-6887.
DOI: 10.1039/c3cc43292k
Google Scholar
[57]
Arul, P, and S. Abraham John. Silver nanoparticles built-in zinc metal organic framework modified electrode for the selective non-enzymatic determination of H2O2. Electrochimica Acta. 235 (2017) 680-689.
DOI: 10.1016/j.electacta.2017.03.097
Google Scholar
[58]
Y. Shu, Y. Yan, J. Chen, Q. Xu, H. Pang and X. Hu, Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Material Interfaces. 9 (2017) 2234.
DOI: 10.1021/acsami.7b10991.s001
Google Scholar
[59]
Kumar Gyanendra, and Dhanraj T. Masram. Sustainable synthesis of MOF-5@ GO nanocomposites for efficient removal of rhodamine B from water. ACS omega. 6, 14 (2021) 9587-9599.
DOI: 10.1021/acsomega.1c00143
Google Scholar
[60]
Ke. Fei, Luhuan Wang, and Junfa Zhu. Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Research. 8, 6 (2015) 1834-1846.
DOI: 10.1007/s12274-014-0690-x
Google Scholar
[61]
El-Ghmari, Brahim, Hanane Farah, and Abdellah Ech-Chahad. A New Approach for the Green Biosynthesis of Silver Oxide Nanoparticles Ag2O, Characterization and Catalytic Application. Bulletin of Chemical Reaction Engineering & Catalysis. 16, 3 (2021) 651-660.
DOI: 10.9767/bcrec.16.3.11577.651-660
Google Scholar
[62]
Yong Ng Law, Akil Ahmad, and Abdul Wahab Mohammad. Synthesis and characterization of silver oxide nanoparticles by a novel method. International Journal of Science Engineering Research. 4, 5 (2013) 155-158.
Google Scholar