Synthesis, Structural and Optical Properties of Co Doped α-Sb2O4 Nanocomposites

Article Preview

Abstract:

Present study reports the Synthesis, optical study of cobalt doped antimony based nanocomposites, which have been prepared by using CoCl3 (0.1M) and SbCl3 (0.1M) in 1:2 ration. The as-synthesized nanocomposites (NS) were analyzed by SEM (scanning electron microscopy), XRD (X-ray diffraction spectroscopy) and UV-Visible spectroscopy The prepared Co:α-Sb2O4 NS are well crystalline with average particle size of 35 to 56 nm. From XRD data X-ray diffraction patterns confirms the orthorhombic phase. From scanning electron microscopy study it shows irregular shape of nanoparticles and crystallinity increases from 36 nm to 56 nm. From optical property studies the blue shift in UV-Visible spectrum of Co:α-Sb2O4 NS is due to overloading of Co ions which intern creates lattice defects. The direct optical band gap (Eg) for Co:α-Sb2O4 NS (10 %) was found to be 3.28 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Adimule, B. C. Yallur, K. Sharma. Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures. J. Opt. 51 (2022) 173-183. https://doi.org/10.1007/s12596-021-00746-3.

DOI: 10.1007/s12596-021-00746-3

Google Scholar

[2] V. Adimule, B. C. Yallur, H. Adarsha. J. Gowda. Crystal Structure, Morphology, Optical and Super-Capacitor Properties of Srx: α-Sb2O4 Nanostructures. Anal. Bioanal. Electrochem. 14 (2022) 1-17.

Google Scholar

[3] V. Adimule, D. Bhowmik, A. H. J. Gowda. Morphology, characterization, and gas sensor properties of Sr doped WO3 thin film nanostructures. Macromol. Symp. 400 (2021) 2100065. https://doi.org/10.1002/masy.202100065.

DOI: 10.1002/masy.202100065

Google Scholar

[4] . Adimule, B. C. Yallur, D. Bhowmik, H. Adarsha, J. Gowda.  Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for Low Cost Optoelectronics Applications. Trans. Electr. Electron. Mater. (2021) 1-16. https://doi.org/10.1007/s42341-021-00348-7.

DOI: 10.1007/s42341-021-00348-7

Google Scholar

[5] V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha. Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics, Materials Today Chemistry. 20 (2021) 2468-5194. https://doi.org/10.1016/j.mtchem.2021.100438.

DOI: 10.1016/j.mtchem.2021.100438

Google Scholar

[6] A. Badawi , Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films. J. Mater. Sci. Mater Electron 26 (2015) 3450–7. https://doi.org/10.1007/ s10854-015-2854-1.

DOI: 10.1007/s10854-015-2854-1

Google Scholar

[7] J. Al-Osaimi, N. Al-Hosiny, S. Abdallah, A. Badawi. Characterization of optical, thermal and electrical properties of SWCNTs/PMMA nanocomposite films. J. Iran. Polym.23 (2014) 437-43. https://doi.org/10.1007/s13726-014-0238-7.

DOI: 10.1007/s13726-014-0238-7

Google Scholar

[8] N. Yahya, M. N. Akhtar, A. F. Masuri, M. Kashif. Synthesis and Characterization of ZnOCNTs Filled PVA Composite as EM Detector. J. Appl. Sci.11 (2011) 1303-8. https:// doi.org/10.3923/jas.2011.1303.1308.

DOI: 10.3923/jas.2011.1303.1308

Google Scholar

[9] F. Song, X. Shen, M. Liu, J. Xiang. Preparation and magnetic properties of SrFe12O19/Ni0.5Zn0.5Fe2O4 nanocomposite ferrite microfibers via sol–gel process. Mater. Chem. Phys.126 (2011) 791-796. https://doi.org/10.1016/j.matchemphys.2010.12.042.

DOI: 10.1016/j.matchemphys.2010.12.042

Google Scholar

[10] A. Badawi, N. Al-Hosiny, S. Abdallah, A. Merazga, H. Talaat. Single wall carbon nanotube/titania nanocomposite photoanodes enhance the photovoltaic performance of cadmium selenide quantum dot-sensitized solar cells. Mater. Sci Semicond. Process. 26 (2014) 162-168. https://doi.org/10.1016/j.mssp.2014.04.028.

DOI: 10.1016/j.mssp.2014.04.028

Google Scholar

[11] A. Sarychev, V. Shalaev. Electrodynamics of metamaterials. Wold. Sci. Pub., New York (2007).

Google Scholar

[12] V. Adimule, RG. Revaiah, SS. Nandi, AH. Jagadeesha Synthesis characterization of Cr doped TeO2 nanostructures and its application as egfet ph sensor. Electroanalysis, 33(3) (2021) 579–590.

DOI: 10.1002/elan.202060329

Google Scholar

[13] V. Adimule, SS. Nandi, BC. Yallur, N. Shaikh, CNT/Graphene-Assisted Flexible thin-film preparation for stretchable electronics and superconductors. In Sensors for Stretchable Electronics in Nanotechnology. (2021) 89–103.

DOI: 10.1201/9781003123781-7

Google Scholar

[14] RS. Keri, V. Adimule, P. Kendrekar, The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top. Catal. (2022).

DOI: 10.1007/s11244-022-01562-0

Google Scholar

[15] V. Adimule, SS. Kerur, S. Chinnam, Guar Gum and its Nanocomposites as Prospective Materials for Miscellaneous Applications: A Short Review. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01587-5.

DOI: 10.1007/s11244-022-01587-5

Google Scholar

[16] V. Adimule, BC. Yallur, R. Keri, Studies on Synthesis, Characterization of Smx ZnO:CoO Nanocomposites and Its Effect on Photo Catalytic Degradation of Textile Dyes. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01574-w.

DOI: 10.1007/s11244-022-01574-w

Google Scholar

[17] V. Adimule, SS. Nandi, BC. Yallur, D. Bhowmik, AH. Jagadeesha, Optical structural and photoluminescence properties of Gdx SrO: CdO nanostructures synthesized by co precipitation method, J. Fluoresc. 31(2) (2021) 487–499.

DOI: 10.1007/s10895-021-02683-7

Google Scholar

[18] V. Adimule, S. Medapa, L.S Kumar, P. Kumar Rao. Novel substituted phenoxy derivatives of 2-chloro-n-{5-[2-(4-methoxy-phenyl)-pyridin-3-yl]-[1, 3, 4] thiadiazol-2-yl}-acetamides: synthesis, characterization and invitro anticancer properties. J. Pharm. Chem. Biol. Sci. 2(2) (2014)130–137.

DOI: 10.7897/2230-8407.041214

Google Scholar

[19] B. Avar,M. Panigrahi, A.K. Soguksu, R. Shashanka, A. Gundes. Photocatalytic Activity of Soft Magnetic Fe80−xCoxZr10Si10 (x = 0, 40, and 80) Nanocrystalline Melt-Spun Ribbons. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01569-7.

DOI: 10.1007/s11244-022-01569-7

Google Scholar

[20] V. Pavitra, B. M. Praveen, G. R. Nagaraju, R. Shashanka. Energy Storage, Photocatalytic and Electrochemical Nitrite Sensing of Ultrasound-Assisted Stable Ta2O5 Nanoparticles. Top. Catal. (2022). https://doi.org/10.1007/s11244-021-01553-7.

DOI: 10.1007/s11244-021-01553-7

Google Scholar

[21] K. S. Kiran, R. Shashanka, S. V. Lokesh. Enhanced Photocatalytic Activity of Hydrothermally Synthesized Perovskite Strontium Titanate Nanocubes. Top. Catal. (2022). https://doi.org/10.1007/s11244-021-01558-2.

DOI: 10.1007/s11244-021-01558-2

Google Scholar

[22] R. Shashanka, D. Ramakrishna.1 - Functionalized nanomaterial-based electrochemical sensors: A sensitive sensor platform. Functionalized Nanomaterial-Based Electrochemical Sensors, Woodhead Publishing. (2022) 3-25. https://doi.org/10.1016/B978-0-12-823788-5.00010-7.

DOI: 10.1016/b978-0-12-823788-5.00010-7

Google Scholar

[23] R. Shashanka, G. K. Jayaprakash, B. G. Prakashaiah, M. Kumar, B.E Kumara Swamy. Electrocatalytic determination of ascorbic acid using a green synthesised magnetite nano-flake modified carbon paste electrode by cyclic voltammetric method, Materials Research Innovations. (2021).

DOI: 10.1080/14328917.2021.1945795

Google Scholar

[24] G. K. Jayaprakash, B. E. Kumaraswamy, R. Shashanka, S. C. Sharma, R. Flores-Moreno. Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications. J. Mol. Liq.15 (2021) 116348. https://doi.org/10.1016/j.molliq. 2021.116348.

DOI: 10.1016/j.molliq.2021.116348

Google Scholar

[25] R. Shashanka, P. Taslimi, A.C. Karaoglanli, O. Uzun, E. Alp, G. K. Jayaprakash. Photocatalytic degradation of Rhodamine B (RhB) dye in waste water and enzymatic inhibition study using cauliflower shaped ZnO nanoparticles synthesized by a novel One-pot green synthesis method. Arab. J. Chem. 14 (2021) 103180. https://doi.org/10.1016/j.arabjc. 2021.103180.

DOI: 10.1016/j.arabjc.2021.103180

Google Scholar

[26] R. Shashanka. Investigation of optical and thermal properties of CuO and ZnO nanoparticles prepared by Crocus Sativus (Saffron) flower extract. J. Iran. Chem. Soc. 18 (2021) 415–427. https://doi.org/10.1007/s13738-020-02037-3.

DOI: 10.1007/s13738-020-02037-3

Google Scholar

[27] R. Shashanka, H. Esgin, V. M. Yilmaz, Y. Caglar. Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. J. Sci.:Adv. Mater. Devices. 5(2) (2020) 185-191. https://doi.org/10.1016/j.jsamd.2020.04.005.

DOI: 10.1016/j.jsamd.2020.04.005

Google Scholar

[28] S.R. Batakurki, V. Adimule, M.M. Pai, E. Ahmed, P. Kendrekar. Synthesis of Cs-Ag/Fe2O3 Nanoparticles Using Vitis labrusca Rachis Extract as Green Hybrid Nanocatalyst for the Reduction of Arylnitro Compounds. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01593-7.

DOI: 10.1007/s11244-022-01593-7

Google Scholar

[29] N.M. Shaikh, G. B. Bagihalli,, V. Adimule, R. S. Keri. A Novel Silica Immobilised Acidic Ionic Liquid [BMIM][AlCl4]as an Effective Catalyst for Biscoumarine Synthesis. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01591-9.

DOI: 10.1007/s11244-022-01591-9

Google Scholar

[30] R. S. Keri, V. Adimule, P. Kendrekar, B. S. Sasidhar. The Nano-Based Catalyst for the Synthesis of Benzimidazoles. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01562-0.

DOI: 10.1007/s11244-022-01562-0

Google Scholar

[31] N. M. Shaikh, V. Adimule, G. B. Bagihalli, R. S. Keri. A Novel Mixed Ag–Pd Nanoparticles Supported on SBA Silica Through [DMAP-TMSP-DABCO]OH Basic Ionic Liquid for Suzuki Coupling Reaction. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01586-6.

DOI: 10.1007/s11244-022-01586-6

Google Scholar

[32] M. M. Pai, S. R. Batakurki, B. C. Yallur, V. Adimule, R. Kusanur, E. Ahmed. Green Synthesis of Chitosan Supported Magnetic Palladium Nanoparticles Using Epiphyllum oxypetalum Leaf Extract (Pd-CsEo/Fe3O4 NPs) as Hybrid Nanocatalyst for Suzuki–Miyaura Coupling of Thiophene. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01576-8.

DOI: 10.1007/s11244-022-01576-8

Google Scholar

[33] N. M. Shaikh, A. D. Sawant, G. B. Bagihalli,M. Challa, V. Adimule. Highly Active Mixed Au–Pd Nanoparticles Supported on RHA Silica Through Immobilised Ionic Liquid for Suzuki Coupling Reaction. Top. Catal. (2022). https://doi.org/10.1007/s11244-021-01547-5.

DOI: 10.1007/s11244-021-01547-5

Google Scholar

[34] V. Adimule, S. S. Nandi, S. S. Kerur, S. A. Khadapure, S. Chinnam. Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01571-z.

DOI: 10.1007/s11244-022-01571-z

Google Scholar

[35] V. Adimule, B. C. Yallur, D. Bhowmik, A. H. Gowda. Dielectric properties of P3BT Doped ZrY2O3/CoZrY2O3 nanostructures for low cost optoelectronics applications. Trans. Electr. Electron. Mater. (2021) https://doi.org/10.1007/s42341-021-00348-7.

DOI: 10.1007/s42341-021-00348-7

Google Scholar

[36] V. Adimule, D. Bhowmik, A. Suryavanshi. Synthesis, characterization of Cr-Gd nanocomposites doped with yttrium possessing dielectric properties. IOP Conf. Ser.: Mater. Sci. Eng. 577 (2019) 012032.

DOI: 10.1088/1757-899x/577/1/012032

Google Scholar

[37] V. Adimule, B. C. Yallur, M. Challa, R. S. Joshi. Synthesis of hierarchical structured Gd doped α-Sb2O4 as an advanced nanomaterial for high performance energy storage devices. Heliyon 7 (2021) e08541. https://doi.org/10.1016/j.heliyon.2021.e08541.

DOI: 10.1016/j.heliyon.2021.e08541

Google Scholar

[38] R. Shashanka, R. Kumara Swamy, B. E. Simultaneous. electro-generation and electro-deposition of copper oxide nanoparticles on glassy carbon electrode and its sensor application. S N Appl. Sci. 2, (2020) 956. https://doi.org/10.1007/s42452-020-2785-1.

DOI: 10.1007/s42452-020-2785-1

Google Scholar

[39] M.M. Rahman, A. Jamal, S.B. Khan, M. Faisal, Fabrication of highly sensitive ethanol chemical sensor based on Sm-doped Co3O4 nano-kernel. J. Phys. Chem. C. 115 (2011) 9503-9510.

DOI: 10.1021/jp202252j

Google Scholar

[40] M. Faisal, S.B. Khan, M.M. Rahman, A. Jamal, Role of ZnO–CeO2 nanostructures as a photo-catalyst and chemi-sensor. J. Mater. Sci. Technol.27 (2011) 594–600.

DOI: 10.1016/s1005-0302(11)60113-8

Google Scholar

[41] V. Adimule, B.C. Yallur, D. Bhowmik. Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures. J. Mater. Sci. Mater. Electron. 32 (2021) 1216-12181. https://doi.org/10.1007/s10854-021-05845-2.

DOI: 10.1007/s10854-021-05845-2

Google Scholar

[42] V. Adimule, P. Vageesha, G. B. Bagihalli, D. Bowmik, H. J. Adarsha. Synthesis characterization of hybrid nanomaterials of strontium yttrium copper doped with indole schiff base derivatives possessing dielectric and semiconductor properties. In Emerging Research in Electronics Computer Science and Technology. (2019) 1131–1140). Springer Singapore. https://doi.org/10.1007/978-981-13-5802-9_97.

DOI: 10.1007/978-981-13-5802-9_97

Google Scholar

[43] Z. J. Zhang, X.Y. Chen. Biomolecule-assisted hydrothermal synthesis of Sb2S3 and Bi2S3 nano crystals and their elevated-temperature oxidation behaviour for conversion into α-Sb2O4 and Bi2O3. J. Phys. Chem. Solid. 70 (2009) 1121-1131.

DOI: 10.1016/j.jpcs.2009.06.010

Google Scholar

[44] N. Bahadur, A. K. Srivastava, S. Kumar, M. Deepa, B. Nag. Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films. Thin Solid Films (2010) 518:5257.

DOI: 10.1016/j.tsf.2010.04.113

Google Scholar

[45] M. Nirmala, A. Anukaliani. Characterization of undoped and Co doped ZnO nanoparticles synthesized by DC thermal plasmamethod. Phys. B: Condens. Matter. 406 (2011) 911-915.

DOI: 10.1016/j.physb.2010.12.026

Google Scholar