[1]
Z. Zhang, F. YanG, J-C. Liu, Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash, Cem Concr. Res. 21 (2022) 52898.
DOI: 10.1016/j.cemconres.2020.106200
Google Scholar
[2]
C. Lu, P. She, H. Chu, Y. Yao, C.K.Y. Leung, An investigation on the performance enhancement and cost reduction of engineered cementitious composites developed with local PVA and PET fibers, Journal of Sustainable Cement-Based Materials. 30 (2022) 1277–1282.
DOI: 10.1080/21650373.2022.2152898
Google Scholar
[3]
Zhang Z, Liu S, Yang F, Sustainable high strength, high ductility engineered cementitious composites (ECC) with substitution of cement by rice husk ash, J Clean Prod. 317 (2021) 128379.
DOI: 10.1016/j.jclepro.2021.128379
Google Scholar
[4]
L. Jing, K.Y. Christopher, Strength improvement of strain-hardening cementitious composites with ultrahigh-volume fly ash, J Mater Civ Eng. 29 (2017) 8.
DOI: 10.1061/(asce)mt.1943-5533.0001987
Google Scholar
[5]
A.H. Alani, N.M. Bunnori, A.T. Noaman, T.A. Majid, Mechanical characteristics of PET fibre-reinforced green ultra-high performance composite concrete, European Journal of Environmental and Civil Engineering. 26 (2020) 2797-2818.
DOI: 10.1080/19648189.2020.1772117
Google Scholar
[6]
R. Tang, Q. Wei, K. Zhang, S. Jiang, Z. Shen, Y. Zhang, C.W.K. Chow, Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete, Journal of Building Engineering. 57 (2022) 104948.
DOI: 10.1016/j.jobe.2022.104948
Google Scholar
[7]
J-J. Zeng, Y-Y. Ye, W-Y. Gao, S.T. Smith, Y-C. Guo, Stress-strain behavior of polyethylene terephthalate fiber-reinforced polymer-confined normal-, high- and ultra-high-strength concrete, Journal of Building Engineering. 30 (2020) 101243.
DOI: 10.1016/j.jobe.2020.101243
Google Scholar
[8]
A.I. Al-Hadithi, A.T. Noaman, W.K. Mosleh, Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC), Composite Structures. 224 (2019) 111021.
DOI: 10.1016/j.compstruct.2019.111021
Google Scholar
[9]
R. Franz, F. Welle, Recycling of Post-Consumer Packaging Materials into New Food Packaging Applications—Critical Review of the European Approach and Future Perspectives, Sustainability. 14 (2022) 824.
DOI: 10.3390/su14020824
Google Scholar
[10]
R. Franz, F. Welle, Contamination Levels in Recollected PET Bottles from Non-Food Applications and their Impact on the Safety of Recycled PET for Food Contact, Molecules. l.25 (2020) 4998.
DOI: 10.3390/molecules25214998
Google Scholar
[11]
J. Cichy, W. Sobczyk, Plastics waste and its recycling), Edukac. Tech. Inform. 1 (2014) 348–353.
Google Scholar
[12]
Plastics Europe. Plastics Europe—The Facts 2018; EPRO Report; Plastics Europe: Frankfurt, Germany (2018).
Google Scholar
[13]
B. Jabłonska, P. Kiełbasa, M. Korenko, T. Drózd, Physical and Chemical Properties of Waste from PET BottlesWashing as A Component of Solid Fuels, Energies. 12 (2019) 2197.
DOI: 10.3390/en12112197
Google Scholar
[14]
Information on http://www.kunststoffverpackungen.de/en/
Google Scholar
[15]
F. Welle. Twenty years of PET bottle to bottle recycling–An overview, Resour. Conserv, Recycl. 55 (2011) 865–875.
DOI: 10.1016/j.resconrec.2011.04.009
Google Scholar
[16]
O. Piringer, L. Baner, Plastic Packaging Materials for Food - Barrier Function, Mass Transport, Quality Assurance, Legislation, Wiley-VCH, Weinheim, 2000.
DOI: 10.1002/9783527613281
Google Scholar
[17]
Opinion of the French Food Safety Agency on the Assessment of Health Risks Associated with the Use of Materials Made from Recycled Poly(ethylene terephthalate) Intended for or Placed in Contact with Foodstuffs and DrinkingWater, Clé(s) d'appartenance, 2006.
Google Scholar
[18]
D. Araujo, J. Azevedo, P. Cardoso, B. Lazarus, M. Morreira, L. Silva, J. Barbosa, Polymeric Composite Reinforced with PET Fiber Waste for Application in Civil Construction as a Cladding Element, Polymers. 14 (2022) 1293.
DOI: 10.3390/polym14071293
Google Scholar
[19]
R.M. Andrew, Global CO2 emissions from cement production, 1928–2017, Earth Syst. Sci. Dat. 10 (2018) 2213–2239.
DOI: 10.5194/essd-10-2213-2018
Google Scholar
[20]
B.S. Pereira, R. Barbosa, T.S. Alves, Evaluation of the morphology and mechanical properties of laminated composites based on epoxy, cork and glass microspheres, Matéria. 24 (2019) 12440.
Google Scholar
[21]
R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilal, M. Rafik, A. Elharfi, Polymer composite materials: A comprehensive review, Composite Structures. 262 (2021) 113640.
DOI: 10.1016/j.compstruct.2021.113640
Google Scholar
[22]
D.P. Armstrong, K. Chatterjee, T.K. Ghosh, R.J. Spontak, Form-stable phase-change elastomer gels derived from thermoplastic elastomer copolyesters swollen with fatty acids, Thermochim Acta. 686 (2020) 686:178566.
DOI: 10.1016/j.tca.2020.178566
Google Scholar
[23]
K. Senthilkumar, N. Saba, M. Chandrasekar, M. Jawaid, N. Rajini, O.Y. Alothman, Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites, Constr Build Mater. 195 (2019) 423–31.
DOI: 10.1016/j.conbuildmat.2018.11.081
Google Scholar
[24]
C. Marthong, D.K. Sarma, Influence of PET fiber geometry on the mechanical properties of concrete: an experimental investigation, European Journal of Environmental and Civil Engineering, 20 (2015) pp.1-14.
DOI: 10.1080/19648189.2015.1072112
Google Scholar
[25]
C. Marthong, Effects of PET fiber arrangement and dimensions on mechanical properties of concrete, The IES Journal Part A: Civil & Structural Engineering. 8 (2015) 111-120.
DOI: 10.1080/19373260.2015.1014304
Google Scholar
[26]
Y. Zhou, S. Zou, J. Wen, Y. Zhang, Study on the damage behavior and energy dissipation characteristics of basalt fiber concrete using SHPB device, Construction and Building Materials. 368 (2023) 130413.
DOI: 10.1016/j.conbuildmat.2023.130413
Google Scholar
[27]
Md.J. Islam, I.A. Dipta, Md. Rahat, Investigation of recycled poly-ethylene terephthalate (PET) as partial replacement of coarse aggregate in concrete, Journal of Civil Engineering (IEB). 46 (2018) 11-20.
Google Scholar
[28]
A.O. Dawood, H. AL-Khazraji, R. S. Falih, Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates, Case Studies in Construction Materials. 14 (2021) e00482.
DOI: 10.1016/j.cscm.2020.e00482
Google Scholar
[29]
G.O. Bamigboye, K. Tarverdi, A. Umoren, D.E. Bassey, U. Okorie, J. Adediran, Evaluation of eco-friendly concrete having waste PET as fine aggregates, Cleaner Materials. 2 (2021) 100026.
DOI: 10.1016/j.clema.2021.100026
Google Scholar
[30]
S. Qaidi, Y.S.S. Al-Kamaki, R. Al-Mahaidi, A.S. Mohammed, H.U. Ahmed, O. Zaid, Investigation of the effectiveness of CFRP strengthening of concrete made with recycled waste PET fine plastic aggregate, PLoS ONE. 17 (2022) 0269664.
DOI: 10.1371/journal.pone.0269664
Google Scholar
[31]
B.W. Jo, Park SK, J.C. Park, Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates, Constr Build Mater. 22 (2008) 2281–2291.
DOI: 10.1016/j.conbuildmat.2007.10.009
Google Scholar
[32]
R.T. Coelho. Contribution to the study of the application of alternative materials based on Portland cement: use of recycled polypropylene grains to replace concrete aggregates, Masters dissertation M.Sc., UNICAMP, Campinas, SP, Brazil (2005).
Google Scholar
[33]
G. Lazorenko, A. Kasprzhitskii, E. H. Fini, Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production, Journal of Cleaner Production. 375 (2022) 134083.
DOI: 10.1016/j.jclepro.2022.134083
Google Scholar
[34]
M. Nematzadeh, A. A. Shahmansouri, M. Fakoor, Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP, Construction and Building Materials. 252 (2020) 119057.
DOI: 10.1016/j.conbuildmat.2020.119057
Google Scholar
[35]
A.Q. Ahdal, M.A. Amrani, A.A.A. Ghaleb, A.A. Abadel, H. Alghamdi, M. Alamri, M. Wasim, M. Shameeri, Mechanical performance and feasibility analysis of green concrete prepared with local natural zeolite and waste PET plastic fibers as cement replacements, Case Studies in Construction Materials. 17 (2022) e01256.
DOI: 10.1016/j.cscm.2022.e01256
Google Scholar
[36]
Brazilian Association of Technical Standards. Concrete — Determination of consistency by slumping the truncated cone Fresh concrete — Stump test ABNT NBR 5738, Rio de Janeiro. (2020)
Google Scholar
[37]
P. Górak, P. Postawa, L. N. Trusilewicz, A. Kalwik, Cementitious eco-composites and their physicochemical/mechanical properties in Portland cement-based mortars with a lightweight aggregate manufactured by upcycling waste by-products, Journal of Cleaner Production. 289 (2021) 125156.
DOI: 10.1016/j.jclepro.2020.125156
Google Scholar
[38]
Brazilian Association of Technical Standards. Concrete — Determination of consistency by slumping the truncated cone Fresh concrete — Stump test ABNT NER 16889, Rio de Janeiro. (2020)
Google Scholar
[39]
Brazilian Association of Technical Standards. Humid Chambers and Tanks for Curing Specimens: NBR 9479, Rio de Janeiro. (2006)
Google Scholar
[40]
M.A. Mohamed, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, Fourier Transform Infrared (FTIR) Spectroscopy. Chapter 1, Membrane Characterization (2017).
DOI: 10.1016/b978-0-444-63776-5.00001-2
Google Scholar
[41]
Brazilian Association of Technical Standards. Concrete - Compression Testing of Cylindrical Specimens: Test Method: NBR 5739, Rio de Janeiro. (2018)
Google Scholar
[42]
A.M. Neville. Concrete Properties - 5ª Edição. Bookman Editora, 912. (2015)
Google Scholar
[43]
Brazilian Association of Technical Standards. Concrete and Mortar: NBR 7222. Rio de Janeiro. (2006)
Google Scholar
[44]
P. Mehta, K. Monteiro, J M. Paulo. Concrete: structure, properties and materials, second ed., São Paulo: Ibracon, 287, 573. (2014)
Google Scholar
[45]
Brazilian Association of Technical Standards. concrete for structural purposes: NBR 8953, Rio de Janeiro. (2015)
Google Scholar
[46]
Z. Han, D. Li, X. Li, Dynamic mechanical properties and wave propagation of composite rock-mortar specimens based on SHPB tests, International Journal of Mining Science and Technology. 32 (2022) 793-806.
DOI: 10.1016/j.ijmst.2022.05.008
Google Scholar
[47]
S. Fang, L. Li, Z. Luo, Z. Fang, D. Huang, F. Liu, H. Wang, Z. Xiong, Novel FRP interlocking multi-spiral reinforced-seawater sea-sand concrete square columns with longitudinal hybrid FRP–steel bars: Monotonic and cyclic axial compressive behaviours, Composite Structures. 305 (2023) 116487.
DOI: 10.1016/j.compstruct.2022.116487
Google Scholar
[48]
S. Silva, T. Prasanthan. Application of Recycled PET Fibers for Concrete Floors, Engineer. LII (2019) 21-27.
DOI: 10.4038/engineer.v52i1.7340
Google Scholar
[49]
M. Leone, G. Centonze, D. Colonna, F. Micelli, M. A. Aiello, Fiber-reinforced concrete with low content of recycled steel fiber: Shear behaviour, Construction and Building Materials. 161 (2018) 141-155.
DOI: 10.1016/j.conbuildmat.2017.11.101
Google Scholar