[1]
M. Sahoo, S. Vishwakarma, C. Panigrahi, J. Kumar, Nanotechnology: Current applications and future scope in food, Food Front. 2(1) (2021) 3-22.
DOI: 10.1002/fft2.58
Google Scholar
[2]
M.T. Bazana, C.F. Codevilla, C.R. de Menezes, Nanoencapsulation of bioactive compounds: Challenges and perspectives, Curr. Opin. Food Sci. 26 (2019) 47-56.
DOI: 10.1016/j.cofs.2019.03.005
Google Scholar
[3]
M. Lengyel, N. Kállai-Szabó, V. Antal, A.J. Laki, I. Antal, Microparticles, microspheres, and microcapsules for advanced drug delivery, Sci. Pharm. 87(3) (2019), 20.
DOI: 10.3390/scipharm87030020
Google Scholar
[4]
H. Hosseini, S.M. Jafari, Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products, Adv. Colloid Interface Sci. 282 (2020) 102210.
DOI: 10.1016/j.cis.2020.102210
Google Scholar
[5]
S.A. Mahdavi, R. Sadeghi, A. Faridi, S. Hedayati, R. Shaddel, C. Dima, S.M. Jafari, Nanodelivery systems for d-limonene; techniques and applications, Food Chem. (2022), 132479.
DOI: 10.1016/j.foodchem.2022.132479
Google Scholar
[6]
M. Pateiro, B. Gómez, P.E. Munekata, F.J. Barba, P. Putnik, D.B. Kovačević, J.M. Lorenzo, Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products, Molecules 26(6) (2021) 1547.
DOI: 10.3390/molecules26061547
Google Scholar
[7]
C.D. Ferreira, I.L. Nunes, Oil nanoencapsulation: development, application, and incorporation into the food market, Nanoscale Res. Lett. 14 (2019) 1-13.
DOI: 10.1186/s11671-018-2829-2
Google Scholar
[8]
G.B. Celli, A. Ghanem, M.S.L. Brooks, Optimized encapsulation of anthocyanin-rich extract from haskap berries (Lonicera caerulea L.) in calcium-alginate microparticles, J. Berry Res. 6(1) (2016) 1-11.
DOI: 10.3233/jbr-150107
Google Scholar
[9]
Information on http://www.tuscany-diet.net/2014/05/06/anthocyanins-fruits-vegetables-cereals/
Google Scholar
[10]
K. Srikaeo, Pigmented and non-pigmented cereals: Comparative study of properties, in: S.P Bangarm S. Maqsood, A.K. Siroha (Eds.), Pigmented Cereals and Millets: Bioactive Profile and Food Applications, The Royal Society of Chemistry, United Kingdom, 2023, pp.207-236.
DOI: 10.1039/9781837670291-00207
Google Scholar
[11]
M.A. Rahim, M. Umar, A. Habib, M. Imran, W. Khalid, C.M.G. Lima, T.B. Emran, Photochemistry, functional properties, food applications, and health prospective of black rice, J. Chem. 2022 (2022).
DOI: 10.1155/2022/2755084
Google Scholar
[12]
F.M. Bhat, S.R. Sommano, C.S. Riar, P. Seesuriyachan, T. Chaiyaso, C. Prom-u-Thai, Status of bioactive compounds from bran of pigmented traditional rice varieties and their scope in production of medicinal food with nutraceutical importance, Agronomy 10(11) (2020) 1817.
DOI: 10.3390/agronomy10111817
Google Scholar
[3]
I.D. Asem, R.K. Imotomba, P.B. Mazumder, J.M. Laishram, Anthocyanin content in the black scented rice (Chakhao): its impact on human health and plant defense, Symbiosis 66 (2015) 47-54.
DOI: 10.1007/s13199-015-0329-z
Google Scholar
[14]
M. Rudrapal, S.J. Khairnar, J. Khan, A.B. Dukhyil, M.A. Ansari, M.N. Alomary, R. Devi, Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism (s) of action, Front. Pharmacol. 13 (2022) 283.
DOI: 10.3389/fphar.2022.806470
Google Scholar
[15]
H. Rasheed, M. Shehzad, R. Rabail, P.L. Kowalczewski, M. Kidoń, P. Jeżowski, R.M. Aadil, Delving into the nutraceutical benefits of purple carrot against metabolic syndrome and cancer: A review, Appl. Sci. 12(6) (2022) 3170.
DOI: 10.3390/app12063170
Google Scholar
[16]
A. Mahdavi, M. Bagherniya, M.S. Mirenayat, S.L. Atkin, A. Sahebkar, Medicinal plants and phytochemicals regulating insulin resistance and glucose homeostasis in type 2 diabetic patients: A clinical review, in: G.E Barreto, A. Sahebkar (Eds.), Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health, Springer, Switzerland, 2021, pp.161-183.
DOI: 10.1007/978-3-030-64872-5_13
Google Scholar
[17]
B. Enaru, G. Drețcanu, T.D. Pop, A. Stǎnilǎ, Z. Diaconeasa, Anthocyanins: Factors affecting their stability and degradation, Antioxidants 10(12) (2021) 1967.
DOI: 10.3390/antiox10121967
Google Scholar
[18]
H. Cao, O. Saroglu, A. Karadag, Z. Diaconeasa, G. Zoccatelli, C.A Conte‐Junior, J. Xiao, Available technologies on improving the stability of polyphenols in food processing, Food Front. 2(2) (2021) 109-139.
DOI: 10.1002/fft2.65
Google Scholar
[19]
S.J.M. Breig, K.J.K. Luti, Response surface methodology: A review on its applications and challenges in microbial cultures, Mater. Today: Proc. 42 (2021) 2277-2284.
DOI: 10.1016/j.matpr.2020.12.316
Google Scholar
[20]
A.I. Khuri, S. Mukhopadhyay, Response surface methodology, Wiley Interdiscip. Rev. Comput. Stat. 2(2) (2010) 128-149.
Google Scholar
[21]
K.A.M. Said, M.A.M. Amin, Overview on the response surface methodology (RSM) in extraction processes, J. Appl. Sci. Process Eng. 2(1) (2015) 8-17.
Google Scholar
[22]
R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: Process and product optimization using designed experiments, fourth ed., John Wiley and Sons, Inc., New Jersey, 2016.
Google Scholar
[23]
E.M. Myo, B. Ge, J. Ma, H. Cui, B. Liu, K. Zhang, Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC microbiol. 19 (2019) 1-14.
DOI: 10.1186/s12866-019-1528-1
Google Scholar
[24]
M. Kamankesh, A. Mohammadi, Z.M. Tehrani, R. Ferdowsi, H. Hosseini, Dispersive liquid liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design. Talanta, 109 (2013), 46-51.
DOI: 10.1016/j.talanta.2013.01.052
Google Scholar
[25]
R.M. Bulatao, J.P.A. Samin, J.J. Monserate, J.R. Salazar, Encapsulation of anthocyanin from black rice (Oryza sativa L.) bran using chitosan-alginate nanoparticles, J. Food Res. 6 (2017) 40-47.
DOI: 10.5539/jfr.v6n3p40
Google Scholar
[26]
R.M. Bulatao, M.M.M. Rubio, R.R. Rafael, D.C. Romano, Extraction of anthocyanin from black rice (Oryza sativa L.) bran using response surface methodology and its stability in biologically relevant buffers, Philipp. Agric. Sci. 102(1) (2019) 1-13.
Google Scholar
[27]
E.S. Abdel-Aal, P. Hucl, A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats, Cereal Chem. 76(3) (2019) 350-354.
DOI: 10.1094/cchem.1999.76.3.350
Google Scholar
[28]
S. De, D. Robinson, Polymer relationships during preparation of chitosan–alginate and poly-l- lysine–alginate nanospheres, J. Controlled Release 89(1) (2003) 101-112.
DOI: 10.1016/s0168-3659(03)00098-1
Google Scholar
[29]
J.P. Doronio, J.R. Salazar, J.J. Monserate, B.J.A. Arevalo, P.J.G. Eugenio, M.M. Sarong, Nanoencapsulation of anthocyanin extract from fermented black garlic (FBG) based on biocompatible polymeric materials, Ann. Chim.-Sci. Mat. 46(1) (2022) 37-43.
DOI: 10.18280/acsm.460105
Google Scholar
[30]
D.T. Santos, M.A.A. Meireles, Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J. Food Process Eng. 36(1) (2013) 36-49.
DOI: 10.1111/j.1745-4530.2011.00651.x
Google Scholar
[31]
V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Meth. enzymol. 299 (1999) 152-178.
DOI: 10.1016/s0076-6879(99)99017-1
Google Scholar
[32]
N. Muntana, S. Prasong, Study on total phenolic contents and their antioxidant activities of Thai white, red and black rice bran extracts. Pak. J. Biol. Sci. 13(4) (2010) 170.
DOI: 10.3923/pjbs.2010.170.174
Google Scholar
[33]
D.C. Montgomery, Design and analysis of experiments: Response surface method and designs, eight ed., John Wiley and Sons, Inc., New Jersey, 2017.
Google Scholar
[34]
A. Kumar, B. Prasad, I.M. Mishra, Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design, J. Hazard Mater. 150(1) (2008) 174-182.
DOI: 10.1016/j.jhazmat.2007.09.043
Google Scholar
[35]
W. Abdelwahed, G. Degobert, S. Stainmesse, H. Fessi, Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv. Drug Delivery Rev. 58(15) (2006) 1688-1713.
DOI: 10.1016/j.addr.2006.09.017
Google Scholar
[36]
M.A. Moretton, D.A. Chiappetta, A. Sosnik, Cryoprotection–lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles, J. R. Soc. Interface 9(68) (2012) 487-502.
DOI: 10.1098/rsif.2011.0414
Google Scholar
[37]
D. Natrajan, S. Srinivasan, K. Sundar, A. Ravindran, Formulation of essential oil-loaded chitosan–alginate nanocapsules, J. Food Drug Anal. 23(3) (2015) 560-568
DOI: 10.1016/j.jfda.2015.01.001
Google Scholar
[38]
S. Ersus, U. Yurdagel, Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier, J. Food Eng. 80(3) (2007) 805-812.
DOI: 10.1016/j.jfoodeng.2006.07.009
Google Scholar