Response Surface Methodology: An Optimization of Process Variables for the Nanoencapsulation of Anthocyanins from Black Rice Bran

Article Preview

Abstract:

Nanoencapsulation technology has been used in food and pharmaceutical applications to increase bioactive chemical functioning and stability against external influences. To develop a cost-effective encapsulating procedure, additional optimization is required. This study employed response surface methodology (RSM) to optimize the encapsulation of anthocyanin-rich extract from black rice bran. The extract was encapsulated through pre-gelation and polyelectrolyte complex formation processes. Box-Behnken design was employed to determine the optimum conditions for the encapsulation process with the following process variables: chitosan concentration, pH, and CaCl2 concentration. Chemical characteristics, surface morphology, and particle size were used to describe the resultant capsules, which were then subjected to phytochemical analysis. The optimal encapsulation conditions for anthocyanin were 6.30 mg/mL chitosan, pH 5.5, and 36 mM CaCl2, with a 51.20 % encapsulation efficiency. The developed anthocyanin-loaded nanocapsule has a high TPC (3.87 mg GAE/g) and potent antioxidant activity (5.69 mg TE/g). SEM images revealed a smooth surface area and spherical particles that clumped together, with an average particle size of 94.70 nm. FTIR analysis corroborates the well-incorporation of anthocyanin into the nanocapsules. The encapsulation process of anthocyanin-rich extract from black rice bran was successfully optimized via RSM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-107

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sahoo, S. Vishwakarma, C. Panigrahi, J. Kumar, Nanotechnology: Current applications and future scope in food, Food Front. 2(1) (2021) 3-22.

DOI: 10.1002/fft2.58

Google Scholar

[2] M.T. Bazana, C.F. Codevilla, C.R. de Menezes, Nanoencapsulation of bioactive compounds: Challenges and perspectives, Curr. Opin. Food Sci. 26 (2019) 47-56.

DOI: 10.1016/j.cofs.2019.03.005

Google Scholar

[3] M. Lengyel, N. Kállai-Szabó, V. Antal, A.J. Laki, I. Antal, Microparticles, microspheres, and microcapsules for advanced drug delivery, Sci. Pharm. 87(3) (2019), 20.

DOI: 10.3390/scipharm87030020

Google Scholar

[4] H. Hosseini, S.M. Jafari, Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products, Adv. Colloid Interface Sci. 282 (2020) 102210.

DOI: 10.1016/j.cis.2020.102210

Google Scholar

[5] S.A. Mahdavi, R. Sadeghi, A. Faridi, S. Hedayati, R. Shaddel, C. Dima, S.M. Jafari, Nanodelivery systems for d-limonene; techniques and applications, Food Chem. (2022), 132479.

DOI: 10.1016/j.foodchem.2022.132479

Google Scholar

[6] M. Pateiro, B. Gómez, P.E. Munekata, F.J. Barba, P. Putnik, D.B. Kovačević, J.M. Lorenzo, Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products, Molecules 26(6) (2021) 1547.

DOI: 10.3390/molecules26061547

Google Scholar

[7] C.D. Ferreira, I.L. Nunes, Oil nanoencapsulation: development, application, and incorporation into the food market, Nanoscale Res. Lett. 14 (2019) 1-13.

DOI: 10.1186/s11671-018-2829-2

Google Scholar

[8] G.B. Celli, A. Ghanem, M.S.L. Brooks, Optimized encapsulation of anthocyanin-rich extract from haskap berries (Lonicera caerulea L.) in calcium-alginate microparticles, J. Berry Res. 6(1) (2016) 1-11.

DOI: 10.3233/jbr-150107

Google Scholar

[9] Information on http://www.tuscany-diet.net/2014/05/06/anthocyanins-fruits-vegetables-cereals/

Google Scholar

[10] K. Srikaeo, Pigmented and non-pigmented cereals: Comparative study of properties, in: S.P Bangarm S. Maqsood, A.K. Siroha (Eds.), Pigmented Cereals and Millets: Bioactive Profile and Food Applications, The Royal Society of Chemistry, United Kingdom, 2023, pp.207-236.

DOI: 10.1039/9781837670291-00207

Google Scholar

[11] M.A. Rahim, M. Umar, A. Habib, M. Imran, W. Khalid, C.M.G. Lima, T.B. Emran, Photochemistry, functional properties, food applications, and health prospective of black rice, J. Chem. 2022 (2022).

DOI: 10.1155/2022/2755084

Google Scholar

[12] F.M. Bhat, S.R. Sommano, C.S. Riar, P. Seesuriyachan, T. Chaiyaso, C. Prom-u-Thai, Status of bioactive compounds from bran of pigmented traditional rice varieties and their scope in production of medicinal food with nutraceutical importance, Agronomy 10(11) (2020) 1817.

DOI: 10.3390/agronomy10111817

Google Scholar

[3] I.D. Asem, R.K. Imotomba, P.B. Mazumder, J.M. Laishram, Anthocyanin content in the black scented rice (Chakhao): its impact on human health and plant defense, Symbiosis 66 (2015) 47-54.

DOI: 10.1007/s13199-015-0329-z

Google Scholar

[14] M. Rudrapal, S.J. Khairnar, J. Khan, A.B. Dukhyil, M.A. Ansari, M.N. Alomary, R. Devi, Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism (s) of action, Front. Pharmacol. 13 (2022) 283.

DOI: 10.3389/fphar.2022.806470

Google Scholar

[15] H. Rasheed, M. Shehzad, R. Rabail, P.L. Kowalczewski, M. Kidoń, P. Jeżowski, R.M. Aadil, Delving into the nutraceutical benefits of purple carrot against metabolic syndrome and cancer: A review, Appl. Sci. 12(6) (2022) 3170.

DOI: 10.3390/app12063170

Google Scholar

[16] A. Mahdavi, M. Bagherniya, M.S. Mirenayat, S.L. Atkin, A. Sahebkar, Medicinal plants and phytochemicals regulating insulin resistance and glucose homeostasis in type 2 diabetic patients: A clinical review, in: G.E Barreto, A. Sahebkar (Eds.), Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health, Springer, Switzerland, 2021, pp.161-183.

DOI: 10.1007/978-3-030-64872-5_13

Google Scholar

[17] B. Enaru, G. Drețcanu, T.D. Pop, A. Stǎnilǎ, Z. Diaconeasa, Anthocyanins: Factors affecting their stability and degradation, Antioxidants 10(12) (2021) 1967.

DOI: 10.3390/antiox10121967

Google Scholar

[18] H. Cao, O. Saroglu, A. Karadag, Z. Diaconeasa, G. Zoccatelli, C.A Conte‐Junior, J. Xiao, Available technologies on improving the stability of polyphenols in food processing, Food Front. 2(2) (2021) 109-139.

DOI: 10.1002/fft2.65

Google Scholar

[19] S.J.M. Breig, K.J.K. Luti, Response surface methodology: A review on its applications and challenges in microbial cultures, Mater. Today: Proc. 42 (2021) 2277-2284.

DOI: 10.1016/j.matpr.2020.12.316

Google Scholar

[20] A.I. Khuri, S. Mukhopadhyay, Response surface methodology, Wiley Interdiscip. Rev. Comput. Stat. 2(2) (2010) 128-149.

Google Scholar

[21] K.A.M. Said, M.A.M. Amin, Overview on the response surface methodology (RSM) in extraction processes, J. Appl. Sci. Process Eng. 2(1) (2015) 8-17.

Google Scholar

[22] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: Process and product optimization using designed experiments, fourth ed., John Wiley and Sons, Inc., New Jersey, 2016.

Google Scholar

[23] E.M. Myo, B. Ge, J. Ma, H. Cui, B. Liu, K. Zhang, Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC microbiol. 19 (2019) 1-14.

DOI: 10.1186/s12866-019-1528-1

Google Scholar

[24] M. Kamankesh, A. Mohammadi, Z.M. Tehrani, R. Ferdowsi, H. Hosseini, Dispersive liquid liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design. Talanta, 109 (2013), 46-51.

DOI: 10.1016/j.talanta.2013.01.052

Google Scholar

[25] R.M. Bulatao, J.P.A. Samin, J.J. Monserate, J.R. Salazar, Encapsulation of anthocyanin from black rice (Oryza sativa L.) bran using chitosan-alginate nanoparticles, J. Food Res. 6 (2017) 40-47.

DOI: 10.5539/jfr.v6n3p40

Google Scholar

[26] R.M. Bulatao, M.M.M. Rubio, R.R. Rafael, D.C. Romano, Extraction of anthocyanin from black rice (Oryza sativa L.) bran using response surface methodology and its stability in biologically relevant buffers, Philipp. Agric. Sci. 102(1) (2019) 1-13.

Google Scholar

[27] E.S. Abdel-Aal, P. Hucl, A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats, Cereal Chem. 76(3) (2019) 350-354.

DOI: 10.1094/cchem.1999.76.3.350

Google Scholar

[28] S. De, D. Robinson, Polymer relationships during preparation of chitosan–alginate and poly-l- lysine–alginate nanospheres, J. Controlled Release 89(1) (2003) 101-112.

DOI: 10.1016/s0168-3659(03)00098-1

Google Scholar

[29] J.P. Doronio, J.R. Salazar, J.J. Monserate, B.J.A. Arevalo, P.J.G. Eugenio, M.M. Sarong, Nanoencapsulation of anthocyanin extract from fermented black garlic (FBG) based on biocompatible polymeric materials, Ann. Chim.-Sci. Mat. 46(1) (2022) 37-43.

DOI: 10.18280/acsm.460105

Google Scholar

[30] D.T. Santos, M.A.A. Meireles, Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J. Food Process Eng. 36(1) (2013) 36-49.

DOI: 10.1111/j.1745-4530.2011.00651.x

Google Scholar

[31] V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, Meth. enzymol. 299 (1999) 152-178.

DOI: 10.1016/s0076-6879(99)99017-1

Google Scholar

[32] N. Muntana, S. Prasong, Study on total phenolic contents and their antioxidant activities of Thai white, red and black rice bran extracts. Pak. J. Biol. Sci. 13(4) (2010) 170.

DOI: 10.3923/pjbs.2010.170.174

Google Scholar

[33] D.C. Montgomery, Design and analysis of experiments: Response surface method and designs, eight ed., John Wiley and Sons, Inc., New Jersey, 2017.

Google Scholar

[34] A. Kumar, B. Prasad, I.M. Mishra, Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design, J. Hazard Mater. 150(1) (2008) 174-182.

DOI: 10.1016/j.jhazmat.2007.09.043

Google Scholar

[35] W. Abdelwahed, G. Degobert, S. Stainmesse, H. Fessi, Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv. Drug Delivery Rev. 58(15) (2006) 1688-1713.

DOI: 10.1016/j.addr.2006.09.017

Google Scholar

[36] M.A. Moretton, D.A. Chiappetta, A. Sosnik, Cryoprotection–lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles, J. R. Soc. Interface 9(68) (2012) 487-502.

DOI: 10.1098/rsif.2011.0414

Google Scholar

[37] D. Natrajan, S. Srinivasan, K. Sundar, A. Ravindran, Formulation of essential oil-loaded chitosan–alginate nanocapsules, J. Food Drug Anal. 23(3) (2015) 560-568

DOI: 10.1016/j.jfda.2015.01.001

Google Scholar

[38] S. Ersus, U. Yurdagel, Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier, J. Food Eng. 80(3) (2007) 805-812.

DOI: 10.1016/j.jfoodeng.2006.07.009

Google Scholar