The Synthesis of Fe-Zeolite Catalyst by Impregnation Process and its Catalytic Performance in Glucose Isomerization

Article Preview

Abstract:

A modified natural zeolite will be used as a catalyst in the isomerization process of glucose to fructose. It is modified by inserting Fe into its pores with the impregnation method so that the active site of the catalyst is formed as part of the isomerization process. This study aimed to make a catalyst from Fe-impregnated natural zeolite and determine its catalytic performance under various pH, temperature, and isomerization time conditions. The zeolite was activated using 6M H2SO4 and 0.5M KMnO4. The zeolite impregnation process was carried out using 1% (%w/v) FeCl3.6H2O solution with a ratio of (1:8) and continued with calcination at 500°C for 4 hours. The Fe-zeolite catalyst was characterized to determine the degree of crystallinity and crystal form, functional groups of its constituent compounds, and surface area. The isomerization process was carried out as a substrate of 10% glucose solution and 1 g of Fe-zeolite catalyst at various temperatures of 40, 50, and 60°C; pH 5, 7, and 9; a sampling time of every 15 minutes for 1 hour. The best fructose yield from the isomerization process was at a reaction temperature of 60°C, pH 5, and 45 min with a yield of 0.837%. It concluded that the Fe-Zeolite catalyst did not give a significant effect on the glucose isomerization process. It is expected that other researchers conduct similar research with different types of metal impregnated to give better results on the glucose isomerization process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-93

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Moliner, Y. Román-Leshkov, and M. E. Davis, Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water, Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 14 (2010) 6164–6168

DOI: 10.1073/pnas.1002358107

Google Scholar

[2] S. Yu, E. Kim, S. Park, I. K. Song, and J. C. Jung, Isomerization of glucose into fructose over Mg-Al hydrotalcite catalysts, Catal. Commun., vol. 29, (2012) 63–67

DOI: 10.1016/j.catcom.2012.09.015

Google Scholar

[3] A. R. Permanasari, A. Fauzan, N. L. Rachmalia, R. Elfanti, and W. Wibisono, Fructose syrup production from Onggok with isomerization process by Mg/Al hydrotalcite catalyst and glucose isomerase enzyme, J. Phys. Conf. Ser., vol. 1450, no. 1 (2020)

DOI: 10.1088/1742-6596/1450/1/012002

Google Scholar

[4] S. Xu, L. Zhang, K. Xiao, and H. Xia, Isomerization of glucose into fructose by environmentally friendly Fe/β zeolite catalysts, Carbohydr. Res., vol. 446–447 (2017) 48–51.

DOI: 10.1016/j.carres.2017.05.006

Google Scholar

[5] Nataša Novak Tušar, Vencˇeslav Kaucˇicˇ, and Nataša Zabukovec Logar National, Functionalized Porous Silicates as Catalysts for Water and Air Purification, Hybrid Materials, Composite, and Organocatalyst. (2013) 365–383

DOI: 10.1016/b978-0-444-53876-5.00017-9

Google Scholar

[6] S. Eskandari, A. Dong, L.T. De Castro, F. B. AB Rahman, Jeremiah Lipp, Douglas A. Blom, John R. Regalbuto, "Pushing the limits of electrostatic adsorption: charge enhanced dry impregnation of SBA-15," Catal. Today, vol. 338. June (2019) 60–71

DOI: 10.1016/j.cattod.2019.06.082

Google Scholar

[7] M. Faisal, Surhartana, and Pardoyo, Zeolit Alam Termodifikasi Logam Fe sebagai Adsorben Fosfat ( PO43- ) pada Air Limbah, J. Kim. Sains dan Apl., vol. 18, no. 3 (2015) 91–95 (in Bahasa)

DOI: 10.14710/jksa.18.3.91-95

Google Scholar

[8] S. Norvia, Suhartana, and Pardoyo, Dealuminasi Zeolit Alam Menggunakan Asam (HCl dan H2SO4), J. Kim. Sains dan Apl., vol. 19, no. 2 (2016) 72–76 (in Bahasa)

DOI: 10.14710/jksa.19.2.72-76

Google Scholar

[9] B. Ramadhita and Muhdarina, Analisis Gugus Fungsi dan Keasaman Zeolit Hasil Sintesis dari Lempung Alam," Repository University of Riau. (2020) (in Bahasa)

Google Scholar

[10] G. Fleury and M. B. J. Roeffaers, Resolving the Acid Site Distribution in Zn-Exchanged ZSM-5 with Stimulated Raman Scattering Microscopy, Catalysts, vol. 10, no. 11, 1331 (2020).

DOI: 10.3390/catal10111331

Google Scholar

[11] N.S. Gould, B. Xu, Quantification of Acid Site Densities on Zeolites in the Presence of Solvents via Determination of Extinction Coefficients of Adsorbed Pyridine http://www.elsevier.com/open-access/userlicense/1.0/, (2017) 1–27.

DOI: 10.1016/j.jcat.2017.11.016

Google Scholar

[12] I. Farida and D. Krisdiyanto, Modifikasi Zeolit Alam Dengan Zirconium Oxydechloride Produk PSTA-BATAN Dan Uji Katalitiknya Untuk Sintesis Senyawa Turunan Gliserol, Indones. J. Mater. Chem. IJMC, vol. 2, no. 2, (2019) 50–55. (in Bahasa)

Google Scholar

[13] L.E. Smart and E.A. Moore, Third Edition Solid State Chemistry An Introduction, Taylor & Francis Group. Boca raton, London, New York, Singapure. (2005)

Google Scholar

[14] V. Putranto and E. K. Jumaeri, Pemanfaatan Zeolit Dari Abu Sekam Padi Dengan Aktivasi Asam Untuk Penurunan Kesadahan Air, J. MIPA, vol. 38, no. 2 (2015) 150–159 (in Bahasa).

Google Scholar

[15] A. Erlynata, S. Amalia, T. K. Adi, and S. N. Khalifah, Pemanfaatan Zeolit Alam, H-Zeolit Alam Dan Ti-H-Zeolit Alam Malang Sebagai Katalis Reaksi Isomerisasi Glukosa, Alchemy, vol. 3, no. 1 (2014) (in Bahasa)

DOI: 10.18860/al.v0i0.2898

Google Scholar

[16] A. R. Pemanasari, R. P. Sihombing, C. Y. Hidayatulloh, S. Al-Ayubi, R. M. Fahmi, M. F. W. Kautsar, W. Wibisono, The effect of precipitation pH and temperature of The Mg/Al Hydrotalcite synthesis on the glucose isomerization, International Journal of Applied Science and Technology, Politekik Negeri Bandung, vol. 3, no. 1 (2022) 22–35

DOI: 10.35313/ijatr.v3i1.55

Google Scholar

[17] Li, C., Wang, Y., Zhang, Y., Wang, M., Sun, X., & Cui, H., Isomerization Kinetics of Glucose to Fructose in Aqueous Solution with Magnesium-Aluminium Hydrotalcites, ChempubSoc, Europe, Chemistry Select, vol 5 (2020) 270-279.

DOI: 10.1002/slct.201903959

Google Scholar

[18] Mahreni, E. Sulistiyowati, Pembuatan "High Fructose Syrup" Dari Tepung Maizena Secara Enzimatis (The Making Of High Fructose Syrup From Cornmeal Flour Through Enzymization), Prosiding SNTKP IV (2004) (in Bahasa)

Google Scholar

[19] I. Delidovich and R. Palkovits, Catalytic activity and stability of hydrophobic Mg/Al hydrotalcite in the continuous aqueous-phase isomerization of glucose into fructose†, Catalysis Science and Technology, 4 (2014) 4322–4329

DOI: 10.1039/c4cy00776j

Google Scholar

[20] D. Steinbach, A. Klier, A. Kruse, J. Sauer, S. Wild, and M. Zanker, Isomerization of glucose to fructose in hydrolysates from lignocellulosic biomass using hydrotalcite. Processes, Vol 8, no. 6 (2020) 1–15.

DOI: 10.3390/pr8060644

Google Scholar

[21] Keryanti, A. R. Permanasari, R. N. Hidayah, R. Hasanah, Penentuan pH dan Suhu Optimum Isomerisasi Pembuatan Sirup Fruktosa dari Hidrolisat Onggok Menggunakan Katalis Mg/Al (Determination of Optimum Isomerization pH and Temperature of Fructose Syrup Production from Onggok Hydrolyzate using Mg/Al Catalyst), CHEESA: Chemical Engineering Research Articles, vol. 5, no.1 (2022) 1-12 (in Bahasa).

DOI: 10.25273/cheesa.v5i1.10243.1-12

Google Scholar

[22] P. S.Kumar, L. Korving, K. J. Keesman, M. C.M. van Loosdrecht, G.J. Witkamp, Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics, Chemical Engineering Journal, Vol. 358 (2019) 160-169

DOI: 10.1016/j.cej.2018.09.202

Google Scholar