The Effect of Molar Ratio and Precipitation Time of Mg/Al Hydrotalcite Synthesis on the Isomerization of Glucose into Fructose

Article Preview

Abstract:

The substitution of Mg/Al hydrotalcite catalyst over the glucose-isomerase is expected to decrease the space-time and reduce the energy consumption of glucose isomerization into fructose. The quality of the Mg/Al hydrotalcite catalyst is determined during the synthesis process. The synthesis has been carried out in the various Mg/Al molar ratio and precipitation times and observed the catalytic activity in the isomerization. Response Surface Methodology (RSM) is used to analyze statistically the optimum condition of the synthesis process. The Mg/Al molar ratio was 1:1 to 4:1 with a precipitation time of 720-1080 min. The characterization of the Mg/Al hydrotalcite catalyst includes the functional groups of the constituent compounds by FTIR, the crystallinity and particle size by (XRD), and the surface area of the catalyst by BET. The RSM results show the optimum condition of the Mg/Al molar ratio and precipitation time to produce the highest mass catalyst product of Mg/Al hydrotalcite catalyst (3,38 g) is 3.34:1 and 984.85 min. The highest degree of crystallinity obtained is 28.70% with the particle size is 10.19 Å. The highest yield and selectivity of the isomerization process are 56.95% and 91.89%, respectively. By the RSM analytical method, the Mg/Al molar ratio and the precipitation time used in this catalyst synthesis do not give a significant effect on the catalytic activity of the isomerization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-83

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Delidovich and R. Palkovits, Catalytic activity and stability of hydrophobic Mg-Al hydrotalcite in the continuous aqueous-phase isomerization of glucose into fructose, Catal. Sci. Technol. vol. 4, no. 12 (2014) 4322–4329

DOI: 10.1039/c4cy00776j

Google Scholar

[2] A. R. Permanasari, A. Fauzan, N. L. Rachmalia, R. Elfanti, and W. Wibisono, Fructose syrup production from Onggok with isomerization process by Mg/Al hydrotalcite catalyst and glucose isomerase enzyme, J. Phys. Conf. Ser. vol. 1450, no. 1 (2020)

DOI: 10.1088/1742-6596/1450/1/012002

Google Scholar

[3] F. Yulistiani, Saripudin, L. Maulani, W. S. Ramdhayani, W. Wibisono, and A. R. Permanasari, Fructose Syrup Production from Tapioca Solid Waste (Onggok) by Using Enzymatic Hydrolysis in Various pH and Isomerization Process, J. Phys. Conf. Ser. vol. 1295, no.1 (2019)

DOI: 10.1088/1742-6596/1295/1/012032

Google Scholar

[4] C. Moreau, R. Durand, A. Roux, and D. Tichit, Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites, Appl. Catal. A Gen. vol. 193, no. 1–2, (2000) 257–264

DOI: 10.1016/s0926-860x(99)00435-4

Google Scholar

[5] S. Yu, E. Kim, S. Park, I. K. Song, and J. C. Jung, Isomerization of glucose into fructose over Mg-Al hydrotalcite catalysts, Catal. Commun. vol. 29, (2012) 63–67

DOI: 10.1016/j.catcom.2012.09.015

Google Scholar

[6] D. Steinbach, A. Klier, A. Kruse, J. Sauer, S. Wild, and M. Zanker, Isomerization of glucose to fructose in hydrolyzates from lignocellulosic biomass using hydrotalcite, Processes. vol. 7, (2020) 1–15.

DOI: 10.3390/pr8060644

Google Scholar

[7] D. G. Cantrell, L. J. Gillie, A. F. Lee, and K. Wilson, Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis, Appl. Catal. A Gen., vol. 287, no. 2, (2000) 183-190

DOI: 10.1016/j.apcata.2005.03.027

Google Scholar

[8] J. Lecomte, A. Finiels, and C. Moreau, Kinetic study of the isomerization of glucose into fructose in the presence of anion-modified hydrotalcites, Starch/Staerke, vol. 54, no. 2, (2002) 75–79

DOI: 10.1002/1521-379x(200202)54:2<75::aid-star75>3.0.co;2-f

Google Scholar

[9] I. Delidovich and R. Palkovits, Structure-performance correlations of Mg-Al hydrotalcite catalysts for the isomerization of glucose into fructose, J. Catal. vol. 327 (2015) 1–9

DOI: 10.1016/j.jcat.2015.04.012

Google Scholar

[10] L.P.F. Benício, R.A. Silva, J.A. Lopes, D.Eulálio, R.M.M. dos Santos, L.A. De Aquino, L. Vergütz, R.F. Novais, L.M. Da Costa, F.G. Pinto, J. Tronto, Layered double hydroxides: Nanomaterials for applications in agriculture | Hidróxidos duplos lamelares: Nanomateriais para aplicações na agricultura, Rev. Bras. Cienc. do Solo, vol. 39, no. 1 (2015)

DOI: 10.1590/01000683rbcs2015081

Google Scholar

[11] B. H. Boehm, J. Steinle, and Z. X. Ci-, [Zn2Cr(OH)6]X.2Hz0, New Layer Compounds Cap able of Anion Exchange and Intracrystalline Swelling, Angew. Chem. lnt. Ed. Engl. 16 No. 4, (1977) 265–266

DOI: 10.1002/anie.197702651

Google Scholar

[12] F. Zhang, N. Du, H. Li, X. Liang, Sorption of Cr(VI) on Mg–Al–Fe Layered 1 Double Hydroxides 2 Synthesized by Mechanochemical Method ( 2014)

DOI: 10.1039/c4ra07553f

Google Scholar

[13] W. Y. Zhang, Y. Liu, and L. J. Xi, Adsorption of chloride anion by calcined Mg-Al-Fe layered double hydroxides in wastewater, Appl. Mech. Mater. vol. 423–426 (2013) 545–549

DOI: 10.4028/www.scientific.net/amm.423-426.545

Google Scholar

[14] Y. Yang, N. Gao, W. Chu, Y. Zhang, and Y. Ma, Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al-Fe) hydrotalcite-like compounds, J. Hazard. Mater. vol. 209–210 (2012) 318–325

DOI: 10.1016/j.jhazmat.2012.01.026

Google Scholar

[15] L. Xiao, W. Ma, M. Han, and Z. Cheng, The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution, J. Hazard. Mater. vol. 186, no. 1, (2011) 690–698

DOI: 10.1016/j.jhazmat.2010.11.052

Google Scholar

[16] S. K. Sharma, P. K. Kushwaha, V. K. Srivastava, S. D. Bhatt, and R. V. Jasra, Effect of hydrothermal conditions on structural and textural properties of synthetic hydrotalcites of varying Mg/Al ratio, Ind. Eng. Chem. Res., vol. 46, no. 14, (2007) 4856–4865

DOI: 10.1021/ie061438w

Google Scholar

[17] Haruda, M. Satria, Fadli, A., Yenti, S.R, Pengaruh pH dan Waktu Reaksi pada Sintesis Hidroksi apatit dari Tulang Sapi dengan Metode Presipitasi, (The effect of pH and The Reaction Time on The Hydroxyapatite Synthesis from The Beef bones), FTEKNIK. 3 (1) (2016) 1-7 (in Bahasa).

DOI: 10.22487/j24775398.2017.v3.i3.9329

Google Scholar

[18] I. Ridwan, C. Chinwanitcharoen, and K. Tamura, A new biodiesel production by water addition to supercritical tert-butyl methyl ether using a plug flow reactor, Fuel. vol. 305, no. 121512 (2021)

DOI: 10.1016/j.fuel.2021.121512

Google Scholar

[19] Safitri, T., Sulistyaningsih, T., Kusumastuti, E., Preparasi Mg/Al/Fe-NO3 Hidrotalsit Secara Kopresipitasi, (Preparation of Mg/Al/Fe-NO3 Hydrotalcite with Coprecipitation), Indonesian Journal of Chemical Science. 8 (1) (2019) 41-46 (in Bahasa).

Google Scholar

[20] C. A. Johnson and F. P. Glasser, Hydrotalcite-like minerals (M2Al(OH 6(CO3)0.5XH2O, where M = Mg, Zn, Co, Ni) in the environment: Synthesis, characterization and thermodynamic stability, Clays Clay Miner. vol. 51, no. 1 (2003) 1–8

DOI: 10.1346/ccmn.2003.510101

Google Scholar

[21] S. Moriyama, K. Sasaki, and T. Hirajima, Effect of freeze drying on characteristics of Mg–Al layered double hydroxides and bimetallic oxide synthesis and implications for fluoride sorption, Appl. Clay Sci. vol. 132–133 (2016) 460–467

DOI: 10.1016/j.clay.2016.07.016

Google Scholar

[22] D. G. Tong, W. Chu, Y. Y. Luo, X. Y. Ji, and Y. He, Effect of crystallinity on the catalytic performance of amorphous Co-B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation, J. Mol. Catal. A Chem. vol. 265, no. 1–2, (2007) 195–204

DOI: 10.1016/j.molcata.2006.10.032

Google Scholar

[23] R. Zhao, C. Yin, H. Zhao, and C. Liu, Synthesis, characterization, and application of hydotalcites in hydrodesulfurization of FCC gasoline, Fuel Process. Technol. vol. 81, no. 3 (2003) 201–209

DOI: 10.1016/s0378-3820(03)00012-2

Google Scholar